Boundary properties of analytic solutions of differential equations of infinite order
Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 323-345 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathscr L(\lambda)$ be an entire function from the class $[1,0]$ with simple zeros $\{\lambda_n\}$ and let $\mathscr G$ be a bounded convex domain. In this paper particular solutions of the equation \begin{equation} (\mathscr L(D))(z)=f(z),\qquad z\in\mathscr G, \tag{\text{I}} \end{equation} are constructed which are analytic in $\mathscr G$ and possess a definite smoothness on the boundary of $\mathscr G$, for the case in which $f$ is analytic in $\mathscr G$ and sufficiently smooth on the boundary. In particular, it is shown that if $\mathscr L(\lambda)$ is an entire function of completely regular growth with proximate order $\rho(r)$, $\rho(r)\to\rho$, $0<\rho<1$, with a positive indicator and a regular set of roots, then for an arbitrary function $f$, analytic in $\mathscr G$ and continuous on $\overline{\mathscr G}$, equation (I) has an effectively defined particular solution analytic in $\mathscr G$ and infinitely differentiable at each boundary point of $\mathscr G$. Bibliography: 14 titles.
@article{SM_1982_43_3_a3,
     author = {Yu. F. Korobeinik},
     title = {Boundary properties of analytic solutions of differential equations of infinite order},
     journal = {Sbornik. Mathematics},
     pages = {323--345},
     year = {1982},
     volume = {43},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_3_a3/}
}
TY  - JOUR
AU  - Yu. F. Korobeinik
TI  - Boundary properties of analytic solutions of differential equations of infinite order
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 323
EP  - 345
VL  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_3_a3/
LA  - en
ID  - SM_1982_43_3_a3
ER  - 
%0 Journal Article
%A Yu. F. Korobeinik
%T Boundary properties of analytic solutions of differential equations of infinite order
%J Sbornik. Mathematics
%D 1982
%P 323-345
%V 43
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1982_43_3_a3/
%G en
%F SM_1982_43_3_a3
Yu. F. Korobeinik. Boundary properties of analytic solutions of differential equations of infinite order. Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 323-345. http://geodesic.mathdoc.fr/item/SM_1982_43_3_a3/

[1] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, M., L., 1941 | Zbl

[2] Korobeinik Yu. F., “Suschestvovanie analiticheskogo resheniya uravneniya beskonechnogo poryadka i kharakter ego oblasti analitichnosti”, Matem. sb., 80(122) (1969), 52–76 | MR | Zbl

[3] Kuk R., Beskonechnye matritsy i prostranstva posledovatelnostei, Fizmatgiz, M., 1960 | MR

[4] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[5] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatgiz, M., 1961

[6] Korobeinik Yu. F., “Differentsialnye uravneniya beskonechnogo poryadka i beskonechnye sistemy differentsialnykh uravnenii”, Izv. AN SSSR, ser. matem., 34 (1970), 881–922 | MR | Zbl

[7] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[8] Melnik Yu. I., “K voprosu o predstavlenii regulyarnykh funktsii ryadami Dirikhle”, Matem. zametki, 21:5 (1977), 641–651 | MR | Zbl

[9] Goldberg A. A., Ostrovskii I. V., “Novye issledovaniya o roste i raspredelenii znachenii tselykh i meromorfnykh funktsii roda nul”, UMN, XVI:4(100) (1961), 51–62 | MR

[10] Valiron G., “Sur les solutions des equations differentielles linéaires d'ordre infini et á coefficients constants”, Ann. Ecole Norm. Super., 46:1 (1929), 25–53 | MR | Zbl

[11] Valiron Zh., Analiticheskie funktsii, Gostekhizdat, M., 1957

[12] Markushevich A. I., Teoriya analiticheskikh funktsii, Gostekhizdat, M., L., 1950

[13] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, Izv. AN SSSR, ser. matem., 42 (1978), 325–355 | MR | Zbl

[14] Leontev A. F., Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980 | MR