A basis of eigenfunctions of Hecke operators in the theory of modular forms of genus $n$
Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 299-321 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathfrak M^n_k(\Gamma,\mu)$, where $n,k>0$ are integers, $\Gamma$ is some congruence subgroup of $\Gamma^n=\operatorname{Sp}_n(\mathbf Z)$ and $\mu\colon\Gamma\to\mathbf C^*$ is a congruence-character of $\Gamma$, be the space of all Siegel modular forms of genus $n$, weight $k$ and character $\mu$ with respect to $\Gamma$. In this paper, for a very broad class of congruence subgroups $\Gamma$ of $\Gamma^n$, including all those previously investigated and practically all those groups encountered in applications, the author constructs a sufficiently large commutative ring of Hecke operators, acting on $\mathfrak M^n_k(\Gamma,\mu)$, a canonical decomposition \begin{equation} \mathfrak M^n_k(\Gamma,\mu)=\bigoplus^n_{r=0}\mathfrak M^{n,r}_k(\Gamma,\mu) \tag{1} \end{equation} and a canonical inner product $(\,{,}\,)_\Gamma$ on $\mathfrak M^n_k(\Gamma,\mu)$. It is shown that the Hecke operators preserve the canonical decomposition (1) and that they are normal with respect to the canonical inner product $(\,{,}\,)_\Gamma$. Bibliography: 17 titles.
@article{SM_1982_43_3_a1,
     author = {S. A. Evdokimov},
     title = {A~basis of eigenfunctions of {Hecke} operators in the theory of modular forms of genus~$n$},
     journal = {Sbornik. Mathematics},
     pages = {299--321},
     year = {1982},
     volume = {43},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_3_a1/}
}
TY  - JOUR
AU  - S. A. Evdokimov
TI  - A basis of eigenfunctions of Hecke operators in the theory of modular forms of genus $n$
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 299
EP  - 321
VL  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_3_a1/
LA  - en
ID  - SM_1982_43_3_a1
ER  - 
%0 Journal Article
%A S. A. Evdokimov
%T A basis of eigenfunctions of Hecke operators in the theory of modular forms of genus $n$
%J Sbornik. Mathematics
%D 1982
%P 299-321
%V 43
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1982_43_3_a1/
%G en
%F SM_1982_43_3_a1
S. A. Evdokimov. A basis of eigenfunctions of Hecke operators in the theory of modular forms of genus $n$. Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 299-321. http://geodesic.mathdoc.fr/item/SM_1982_43_3_a1/

[1] Siegel C. L., “Einführimg in die Theorie der Modulfunktion $n$-ten Grades”, Math. Ann., 116 (1939), 617–657 | DOI | MR | Zbl

[2] Hecke E., “Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I, II”, Math. Ann., 114 (1937), 1–28, 316–351 | DOI | MR | Zbl

[3] Hecke E., “Theorie der Eisensteinschen Reihen hoherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetick”, Abh. Math. Sem. Hamburg, 5 (1927), 199–224 | DOI | Zbl

[4] Peterson H., “Konstruktion der sämtlichen Losungen einer Riemannschen Funktionalgleichung durch Dirichlet–Reichen mit Eulerscher Produktentwicklung. I, II, III”, Math. Ann., 116 (1939), 401–412 ; 117 (1940/41), 39–64, 277–300 | DOI | MR | DOI

[5] Satake I., “Theory of spherical functions on reductive algebraic group over $p$-adic fields”, Publ. Math. IHES, 1963, no. 18, 1–69 | MR

[6] Maass H., “Die Primzahlen in der Theorie der Siegelschen Modulfunktionen”, Math. Ann., 124 (1951), 87–122 | DOI | MR | Zbl

[7] Andrianov A. Ya., “Eilerovy proizvedeniya, otvechayuschie modulyarnym formam Zigelya roda 2”, UMN, XXIX:3 (1974), 43–110 | MR

[8] Zharkovskaya N. A., “Operator Zigelya i operatory Gekke”, Funkts. analiz, 8:2 (1974), 30–38 | MR | Zbl

[9] Andrianov A. N., “O razlozhenii mnogochlenov Gekke dlya simplekticheskoi gruppy roda $n$”, Matem. sb., 104(146) (1977), 390–427 | MR | Zbl

[10] Evdokimov S. A., “Eilerovy proizvedeniya dlya kongruents-podgruppy zigelevoi gruppy roda 2”, Matem. sb., 99(141) (1976), 483–513 | MR | Zbl

[11] Evdokimov S. A., “Analiticheskie svoistva eilerovykh proizvedenii dlya kongruents-podgrupp $\mathrm{Sp}_2({\mathbf Z})$”, Matem. sb., 110(152) (1979), 369–398 | MR | Zbl

[12] Koecher M., “Zur Theorie der Modulformen $n$-ten Grades”, Math. Z., 59 (1954), 399–416 ; 61 (1955), 455–466 | DOI | MR | Zbl | DOI | MR | Zbl

[13] Andrianov A. N., “Multiplikativnaya arifmetika zigelevykh modulyarnykh form”, UMN, 34:1 (1979), 67–135 | MR | Zbl

[14] Andrianov A. N., Maloletkin G. N., “Povedenie teta-ryadov pri modulyarnykh podstanovkakh”, Izv. AN, ser. matem., 39 (1975), 243–258 | MR | Zbl

[15] Séminaire H. Cartan, 10e année, 1957–1958. Fonctions Automorphes, Paris, 1958 | MR

[16] Freitag E., “Die Invarianz gewisser von Thetareihen erzeugter Vektorräume unter Heckeoperatoren”, Math. Z., 156 (1977), 141–155 | DOI | MR | Zbl

[17] Eichler M., Quandratische Formen und orthogonale Gruppen, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1952 | MR