A~basis of eigenfunctions of Hecke operators in the theory of modular forms of genus~$n$
Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 299-321

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak M^n_k(\Gamma,\mu)$, where $n,k>0$ are integers, $\Gamma$ is some congruence subgroup of $\Gamma^n=\operatorname{Sp}_n(\mathbf Z)$ and $\mu\colon\Gamma\to\mathbf C^*$ is a congruence-character of $\Gamma$, be the space of all Siegel modular forms of genus $n$, weight $k$ and character $\mu$ with respect to $\Gamma$. In this paper, for a very broad class of congruence subgroups $\Gamma$ of $\Gamma^n$, including all those previously investigated and practically all those groups encountered in applications, the author constructs a sufficiently large commutative ring of Hecke operators, acting on $\mathfrak M^n_k(\Gamma,\mu)$, a canonical decomposition \begin{equation} \mathfrak M^n_k(\Gamma,\mu)=\bigoplus^n_{r=0}\mathfrak M^{n,r}_k(\Gamma,\mu) \tag{1} \end{equation} and a canonical inner product $(\,{,}\,)_\Gamma$ on $\mathfrak M^n_k(\Gamma,\mu)$. It is shown that the Hecke operators preserve the canonical decomposition (1) and that they are normal with respect to the canonical inner product $(\,{,}\,)_\Gamma$. Bibliography: 17 titles.
@article{SM_1982_43_3_a1,
     author = {S. A. Evdokimov},
     title = {A~basis of eigenfunctions of {Hecke} operators in the theory of modular forms of genus~$n$},
     journal = {Sbornik. Mathematics},
     pages = {299--321},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_3_a1/}
}
TY  - JOUR
AU  - S. A. Evdokimov
TI  - A~basis of eigenfunctions of Hecke operators in the theory of modular forms of genus~$n$
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 299
EP  - 321
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_3_a1/
LA  - en
ID  - SM_1982_43_3_a1
ER  - 
%0 Journal Article
%A S. A. Evdokimov
%T A~basis of eigenfunctions of Hecke operators in the theory of modular forms of genus~$n$
%J Sbornik. Mathematics
%D 1982
%P 299-321
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_43_3_a1/
%G en
%F SM_1982_43_3_a1
S. A. Evdokimov. A~basis of eigenfunctions of Hecke operators in the theory of modular forms of genus~$n$. Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 299-321. http://geodesic.mathdoc.fr/item/SM_1982_43_3_a1/