Degenerate operator equations
Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 287-298

Voir la notice de l'article provenant de la source Math-Net.Ru

The differential-operator equation $$ [-D_tt^\alpha D_t-D_tA-P]u=f $$ is studied, where $D_t\equiv\frac d{dt}$, $t\in[0,b]$, $\alpha\geqslant0$, and the operators $A,P\colon\mathscr H\to\mathscr H$, which commute with $D_t$, act in a Hilbert space $\mathscr H$ and satisfy appropriate (quite strong) requirements formulated in terms of resolvent, or spectral, properties. The character of the boundary conditions with respect to $t$ (at $t=0,b$), which are imposed on the equation and ensure existence and uniqueness of the solution, is elucidated, and properties of the solution depending on $\alpha$ and on the properties of the operators $A$ and $P$ are investigated, as well. Bibliography: 7 titles.
@article{SM_1982_43_3_a0,
     author = {A. A. Dezin},
     title = {Degenerate operator equations},
     journal = {Sbornik. Mathematics},
     pages = {287--298},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_3_a0/}
}
TY  - JOUR
AU  - A. A. Dezin
TI  - Degenerate operator equations
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 287
EP  - 298
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_3_a0/
LA  - en
ID  - SM_1982_43_3_a0
ER  - 
%0 Journal Article
%A A. A. Dezin
%T Degenerate operator equations
%J Sbornik. Mathematics
%D 1982
%P 287-298
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_43_3_a0/
%G en
%F SM_1982_43_3_a0
A. A. Dezin. Degenerate operator equations. Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 287-298. http://geodesic.mathdoc.fr/item/SM_1982_43_3_a0/