Control problems and theorems concerning the unique solvability of a mixed boundary value problem for the three-dimensional Navier–Stokes and Euler equations
Sbornik. Mathematics, Tome 43 (1982) no. 2, pp. 251-273 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, theorems on the existence of smooth solutions of certain control problems describable by the Navier–Stokes and Euler equations are proved. It is shown that a mixed boundary value problem for the Navier–Stokes and Euler equations of dimension $n\geqslant3$ is uniquely solvable for a dense set of right-hand sides. Bibliography: 13 titles.
@article{SM_1982_43_2_a5,
     author = {A. V. Fursikov},
     title = {Control problems and theorems concerning the unique solvability of a~mixed boundary value problem for the three-dimensional {Navier{\textendash}Stokes} and {Euler} equations},
     journal = {Sbornik. Mathematics},
     pages = {251--273},
     year = {1982},
     volume = {43},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_2_a5/}
}
TY  - JOUR
AU  - A. V. Fursikov
TI  - Control problems and theorems concerning the unique solvability of a mixed boundary value problem for the three-dimensional Navier–Stokes and Euler equations
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 251
EP  - 273
VL  - 43
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_2_a5/
LA  - en
ID  - SM_1982_43_2_a5
ER  - 
%0 Journal Article
%A A. V. Fursikov
%T Control problems and theorems concerning the unique solvability of a mixed boundary value problem for the three-dimensional Navier–Stokes and Euler equations
%J Sbornik. Mathematics
%D 1982
%P 251-273
%V 43
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1982_43_2_a5/
%G en
%F SM_1982_43_2_a5
A. V. Fursikov. Control problems and theorems concerning the unique solvability of a mixed boundary value problem for the three-dimensional Navier–Stokes and Euler equations. Sbornik. Mathematics, Tome 43 (1982) no. 2, pp. 251-273. http://geodesic.mathdoc.fr/item/SM_1982_43_2_a5/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl

[2] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[3] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR

[4] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[5] Yudovich V. I., “Nestatsionarnye techeniya idealnoi neszhimaemoi zhidkosti”, Zhurn. vych. matem. i matem. fiziki, 3:6 (1963), 1032–1066 | Zbl

[6] Vishik M. I., Fursikov A. V., “Analiticheskie pervye integraly nelineinykh parabolicheskikh v smysle I. G. Petrovskogo sistem differentsialnykh uravnenii i ikh prilozheniya”, Uspekhi matem. nauk, XXIX:2(176) (1974), 123–153

[7] Kuksin S. B., “Kharakter zavisimosti ot nachalnykh uslovii reshenii nelineinykh parabolicheskikh uravnenii”, Vesti. MGU, ser. matem., mekh., 1979, no. 2, 17–21 | MR | Zbl

[8] Vishik M. I., Fursikov L. V., Matematicheskie zadachi statisticheskoi gidromekhaniki, Nauka, M., 1980 | MR

[9] Fursikov A. V., “O nekotorykh zadachakh upravleniya i o rezultatakh, kasayuschikhsya odnoznachnoi razreshimosti smeshannoi kraevoi zadachi dlya trekhmernykh sistem Nave–Stoksa i Eilera”, DAN SSSR, 252:5 (1980), 1066–1070 | MR | Zbl

[10] Lione Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[11] Foias C., Temam R., “Structure of the set of stationary solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 30:2 (1977), 149–164 | DOI | MR | Zbl

[12] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[13] Temam R., “On the Euler equations of incompressible perfect fluids”, J. Functtional Analysis, 20:1 (1975), 32–43 | DOI | MR | Zbl