Control problems and theorems concerning the unique solvability of a~mixed boundary value problem for the three-dimensional Navier--Stokes and Euler equations
Sbornik. Mathematics, Tome 43 (1982) no. 2, pp. 251-273

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, theorems on the existence of smooth solutions of certain control problems describable by the Navier–Stokes and Euler equations are proved. It is shown that a mixed boundary value problem for the Navier–Stokes and Euler equations of dimension $n\geqslant3$ is uniquely solvable for a dense set of right-hand sides. Bibliography: 13 titles.
@article{SM_1982_43_2_a5,
     author = {A. V. Fursikov},
     title = {Control problems and theorems concerning the unique solvability of a~mixed boundary value problem for the three-dimensional {Navier--Stokes} and {Euler} equations},
     journal = {Sbornik. Mathematics},
     pages = {251--273},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_2_a5/}
}
TY  - JOUR
AU  - A. V. Fursikov
TI  - Control problems and theorems concerning the unique solvability of a~mixed boundary value problem for the three-dimensional Navier--Stokes and Euler equations
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 251
EP  - 273
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_2_a5/
LA  - en
ID  - SM_1982_43_2_a5
ER  - 
%0 Journal Article
%A A. V. Fursikov
%T Control problems and theorems concerning the unique solvability of a~mixed boundary value problem for the three-dimensional Navier--Stokes and Euler equations
%J Sbornik. Mathematics
%D 1982
%P 251-273
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_43_2_a5/
%G en
%F SM_1982_43_2_a5
A. V. Fursikov. Control problems and theorems concerning the unique solvability of a~mixed boundary value problem for the three-dimensional Navier--Stokes and Euler equations. Sbornik. Mathematics, Tome 43 (1982) no. 2, pp. 251-273. http://geodesic.mathdoc.fr/item/SM_1982_43_2_a5/