An asymptotic expansion of the solution of a~second order elliptic equation with periodic rapidly oscillating coefficients
Sbornik. Mathematics, Tome 43 (1982) no. 2, pp. 181-198
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper studies the asymptotic behavior of the fundamental solution $K_\varepsilon(x,y)$ of the equation
$$
-\frac\partial{\partial x_i}\biggl(a_{ij}\biggl(\frac x\varepsilon\biggr)\frac\partial{\partial x_j}u_\varepsilon\biggr)=f(x),
$$
specified on the whole space $\mathbf R^n$, $n>2$, as $\varepsilon\to0$. The coefficients $a_{ij}(y)$ are periodic functions which satisfy the conditions of ellipticity, symmetry, and infinite smoothness.
The main result is the construction of the asymptotics of $K_\varepsilon(x,y)$ in the form
$$
K_\varepsilon(x,y)=\sum^M_{s=0}\varepsilon^s\Phi_s\biggl(x-y,\frac x\varepsilon,\frac y\varepsilon\biggr)+\varepsilon^{M+1}R_M(x,y,\varepsilon),
$$
where $M$ is an arbitrary positive integer, the $\Phi_s(x,y,z)$ are homogeneous of degree $-s-n+2$ in the first argument and periodic in the remaining arguments, and for the remainder term $R_M(x,y,\varepsilon)$ on the set $|x-y|>\delta$, $\delta>0$, the estimate
$$
|R_M(x,y,\varepsilon)|\frac{C_M(\delta)}{|x-y|^{M+n-1}}
$$
holds, where the constants $C_M(\delta)$ are independent of $x$, $y$, and $\varepsilon$.
Figures: 1.
Bibliography: 9 titles.
@article{SM_1982_43_2_a2,
author = {E. V. Sevost'yanova},
title = {An asymptotic expansion of the solution of a~second order elliptic equation with periodic rapidly oscillating coefficients},
journal = {Sbornik. Mathematics},
pages = {181--198},
publisher = {mathdoc},
volume = {43},
number = {2},
year = {1982},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1982_43_2_a2/}
}
TY - JOUR AU - E. V. Sevost'yanova TI - An asymptotic expansion of the solution of a~second order elliptic equation with periodic rapidly oscillating coefficients JO - Sbornik. Mathematics PY - 1982 SP - 181 EP - 198 VL - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1982_43_2_a2/ LA - en ID - SM_1982_43_2_a2 ER -
%0 Journal Article %A E. V. Sevost'yanova %T An asymptotic expansion of the solution of a~second order elliptic equation with periodic rapidly oscillating coefficients %J Sbornik. Mathematics %D 1982 %P 181-198 %V 43 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1982_43_2_a2/ %G en %F SM_1982_43_2_a2
E. V. Sevost'yanova. An asymptotic expansion of the solution of a~second order elliptic equation with periodic rapidly oscillating coefficients. Sbornik. Mathematics, Tome 43 (1982) no. 2, pp. 181-198. http://geodesic.mathdoc.fr/item/SM_1982_43_2_a2/