An asymptotic expansion of the solution of a~second order elliptic equation with periodic rapidly oscillating coefficients
Sbornik. Mathematics, Tome 43 (1982) no. 2, pp. 181-198

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the asymptotic behavior of the fundamental solution $K_\varepsilon(x,y)$ of the equation $$ -\frac\partial{\partial x_i}\biggl(a_{ij}\biggl(\frac x\varepsilon\biggr)\frac\partial{\partial x_j}u_\varepsilon\biggr)=f(x), $$ specified on the whole space $\mathbf R^n$, $n>2$, as $\varepsilon\to0$. The coefficients $a_{ij}(y)$ are periodic functions which satisfy the conditions of ellipticity, symmetry, and infinite smoothness. The main result is the construction of the asymptotics of $K_\varepsilon(x,y)$ in the form $$ K_\varepsilon(x,y)=\sum^M_{s=0}\varepsilon^s\Phi_s\biggl(x-y,\frac x\varepsilon,\frac y\varepsilon\biggr)+\varepsilon^{M+1}R_M(x,y,\varepsilon), $$ where $M$ is an arbitrary positive integer, the $\Phi_s(x,y,z)$ are homogeneous of degree $-s-n+2$ in the first argument and periodic in the remaining arguments, and for the remainder term $R_M(x,y,\varepsilon)$ on the set $|x-y|>\delta$, $\delta>0$, the estimate $$ |R_M(x,y,\varepsilon)|\frac{C_M(\delta)}{|x-y|^{M+n-1}} $$ holds, where the constants $C_M(\delta)$ are independent of $x$, $y$, and $\varepsilon$. Figures: 1. Bibliography: 9 titles.
@article{SM_1982_43_2_a2,
     author = {E. V. Sevost'yanova},
     title = {An asymptotic expansion of the solution of a~second order elliptic equation with periodic rapidly oscillating coefficients},
     journal = {Sbornik. Mathematics},
     pages = {181--198},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_2_a2/}
}
TY  - JOUR
AU  - E. V. Sevost'yanova
TI  - An asymptotic expansion of the solution of a~second order elliptic equation with periodic rapidly oscillating coefficients
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 181
EP  - 198
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_2_a2/
LA  - en
ID  - SM_1982_43_2_a2
ER  - 
%0 Journal Article
%A E. V. Sevost'yanova
%T An asymptotic expansion of the solution of a~second order elliptic equation with periodic rapidly oscillating coefficients
%J Sbornik. Mathematics
%D 1982
%P 181-198
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_43_2_a2/
%G en
%F SM_1982_43_2_a2
E. V. Sevost'yanova. An asymptotic expansion of the solution of a~second order elliptic equation with periodic rapidly oscillating coefficients. Sbornik. Mathematics, Tome 43 (1982) no. 2, pp. 181-198. http://geodesic.mathdoc.fr/item/SM_1982_43_2_a2/