Varieties of algebras that are solvable of index~2
Sbornik. Mathematics, Tome 43 (1982) no. 2, pp. 159-180

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak M$ be one of the varieties $\operatorname{Alt}_2$, $(-1,1)_2$, $\operatorname{Malc}_2$ or $\operatorname{Jord}_2$ and let $\mathscr M$ be the set of all non-nilpotent subvarieties of $\mathfrak M$. This set is provided in a natural way with a certain topology. A characterization of $\mathfrak M$ is given in terms of the corresponding structure on $\mathscr M$. Bibliography: 12 titles.
@article{SM_1982_43_2_a1,
     author = {S. V. Pchelintsev},
     title = {Varieties of algebras that are solvable of index~2},
     journal = {Sbornik. Mathematics},
     pages = {159--180},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_2_a1/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
TI  - Varieties of algebras that are solvable of index~2
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 159
EP  - 180
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_2_a1/
LA  - en
ID  - SM_1982_43_2_a1
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%T Varieties of algebras that are solvable of index~2
%J Sbornik. Mathematics
%D 1982
%P 159-180
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_43_2_a1/
%G en
%F SM_1982_43_2_a1
S. V. Pchelintsev. Varieties of algebras that are solvable of index~2. Sbornik. Mathematics, Tome 43 (1982) no. 2, pp. 159-180. http://geodesic.mathdoc.fr/item/SM_1982_43_2_a1/