Varieties of algebras that are solvable of index~2
Sbornik. Mathematics, Tome 43 (1982) no. 2, pp. 159-180
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak M$ be one of the varieties $\operatorname{Alt}_2$, $(-1,1)_2$, $\operatorname{Malc}_2$ or $\operatorname{Jord}_2$ and let $\mathscr M$ be the set of all non-nilpotent subvarieties of $\mathfrak M$. This set is provided in a natural way with a certain topology. A characterization of $\mathfrak M$ is given in terms of the corresponding structure on $\mathscr M$.
Bibliography: 12 titles.
@article{SM_1982_43_2_a1,
author = {S. V. Pchelintsev},
title = {Varieties of algebras that are solvable of index~2},
journal = {Sbornik. Mathematics},
pages = {159--180},
publisher = {mathdoc},
volume = {43},
number = {2},
year = {1982},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1982_43_2_a1/}
}
S. V. Pchelintsev. Varieties of algebras that are solvable of index~2. Sbornik. Mathematics, Tome 43 (1982) no. 2, pp. 159-180. http://geodesic.mathdoc.fr/item/SM_1982_43_2_a1/