Decomposition of optional supermartingales
Sbornik. Mathematics, Tome 43 (1982) no. 2, pp. 145-158
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X=(X_t, \mathscr F_t)$ be an optional submartingale of the class $(D)$. It is proved that there exist an optional martingale $m=(m_t, \mathscr F_t)$ and a strongly predictable process $A=(A_t, \mathscr F_t)$ such that the Doob decomposition $X_t=m_t+A_t$ is valid.
Bibliography: 10 titles.
@article{SM_1982_43_2_a0,
author = {L. I. Gal'chuk},
title = {Decomposition of optional supermartingales},
journal = {Sbornik. Mathematics},
pages = {145--158},
publisher = {mathdoc},
volume = {43},
number = {2},
year = {1982},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1982_43_2_a0/}
}
L. I. Gal'chuk. Decomposition of optional supermartingales. Sbornik. Mathematics, Tome 43 (1982) no. 2, pp. 145-158. http://geodesic.mathdoc.fr/item/SM_1982_43_2_a0/