Decomposition of optional supermartingales
Sbornik. Mathematics, Tome 43 (1982) no. 2, pp. 145-158

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X=(X_t, \mathscr F_t)$ be an optional submartingale of the class $(D)$. It is proved that there exist an optional martingale $m=(m_t, \mathscr F_t)$ and a strongly predictable process $A=(A_t, \mathscr F_t)$ such that the Doob decomposition $X_t=m_t+A_t$ is valid. Bibliography: 10 titles.
@article{SM_1982_43_2_a0,
     author = {L. I. Gal'chuk},
     title = {Decomposition of optional supermartingales},
     journal = {Sbornik. Mathematics},
     pages = {145--158},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_2_a0/}
}
TY  - JOUR
AU  - L. I. Gal'chuk
TI  - Decomposition of optional supermartingales
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 145
EP  - 158
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_2_a0/
LA  - en
ID  - SM_1982_43_2_a0
ER  - 
%0 Journal Article
%A L. I. Gal'chuk
%T Decomposition of optional supermartingales
%J Sbornik. Mathematics
%D 1982
%P 145-158
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_43_2_a0/
%G en
%F SM_1982_43_2_a0
L. I. Gal'chuk. Decomposition of optional supermartingales. Sbornik. Mathematics, Tome 43 (1982) no. 2, pp. 145-158. http://geodesic.mathdoc.fr/item/SM_1982_43_2_a0/