Decomposition of optional supermartingales
Sbornik. Mathematics, Tome 43 (1982) no. 2, pp. 145-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X=(X_t, \mathscr F_t)$ be an optional submartingale of the class $(D)$. It is proved that there exist an optional martingale $m=(m_t, \mathscr F_t)$ and a strongly predictable process $A=(A_t, \mathscr F_t)$ such that the Doob decomposition $X_t=m_t+A_t$ is valid. Bibliography: 10 titles.
@article{SM_1982_43_2_a0,
     author = {L. I. Gal'chuk},
     title = {Decomposition of optional supermartingales},
     journal = {Sbornik. Mathematics},
     pages = {145--158},
     year = {1982},
     volume = {43},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_2_a0/}
}
TY  - JOUR
AU  - L. I. Gal'chuk
TI  - Decomposition of optional supermartingales
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 145
EP  - 158
VL  - 43
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_2_a0/
LA  - en
ID  - SM_1982_43_2_a0
ER  - 
%0 Journal Article
%A L. I. Gal'chuk
%T Decomposition of optional supermartingales
%J Sbornik. Mathematics
%D 1982
%P 145-158
%V 43
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1982_43_2_a0/
%G en
%F SM_1982_43_2_a0
L. I. Gal'chuk. Decomposition of optional supermartingales. Sbornik. Mathematics, Tome 43 (1982) no. 2, pp. 145-158. http://geodesic.mathdoc.fr/item/SM_1982_43_2_a0/

[1] Meier P. A., Veroyatnost i potentsialy, Mir, M., 1973

[2] Dellacherie C., Deux remarques sur la séparabilité optionnelle, Sem. Prob. (Strasbourg, XL), Lecture Notes in Math., 581, Springer-Verlag, Berlin, 1977 | MR

[3] Dellacherie C., Sur la régularisation des surmartingales, Sem. Prob. (Strasbourg, XL), Lecture Notes in Math, 581, Springer-Verlag, Berlin, 1977 | MR

[4] Dellacherie C., Meyer P. A., Un nouveau théorème de projection et de section, Sem. Prob. (Strasbourg, IX), Lecture Notes in Math., 465, Springer-Verlag, Berlin, 1975 | MR

[5] Galchuk L. I., “O suschestvovanii optsionalnykh modifikatsii dlya martingalov”, Teoriya veroyatn., XXII:3 (1977), 620–622

[6] Dellacherie C., Meyer P. A., Probabilités et potentiels (version refondue), Hermann, Paris, 1976 | MR

[7] Neveu J., Martingales á temps discret, Masson, Paris, 1972 | MR

[8] Dellasheri K., Emkosti i sluchainye protsessy, Mir, M., 1975 | MR

[9] Galchuk L. I., “Optsionalnye martingaly”, Matem. sb., 112 (154) (1980), 483–521 | MR

[10] Jacod J., “Multivariate point process: predictable projection, Radon–Nicodym derivatives, representation of martingales”, Z. W-theorie, 31:3 (1975), 235–253 | MR | Zbl