On the cochain complex of topological spaces
Sbornik. Mathematics, Tome 43 (1982) no. 1, pp. 133-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X$ be a topological space and $C^*(X; R)$ the cochain complex with coefficients in $R$. In this paper it is shown that one can define on $C^*(X; R)$ the structure of algebras over an $E_\infty$-operad, and the $B$-construction is carried out. The $B$-construction is an $E_\infty$-algebra that makes it possible to define an $E_\infty$-structure on the cochain complex of loop spaces. Bibliography: 8 titles.
@article{SM_1982_43_1_a6,
     author = {V. A. Smirnov},
     title = {On the cochain complex of topological spaces},
     journal = {Sbornik. Mathematics},
     pages = {133--144},
     year = {1982},
     volume = {43},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_1_a6/}
}
TY  - JOUR
AU  - V. A. Smirnov
TI  - On the cochain complex of topological spaces
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 133
EP  - 144
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_1_a6/
LA  - en
ID  - SM_1982_43_1_a6
ER  - 
%0 Journal Article
%A V. A. Smirnov
%T On the cochain complex of topological spaces
%J Sbornik. Mathematics
%D 1982
%P 133-144
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1982_43_1_a6/
%G en
%F SM_1982_43_1_a6
V. A. Smirnov. On the cochain complex of topological spaces. Sbornik. Mathematics, Tome 43 (1982) no. 1, pp. 133-144. http://geodesic.mathdoc.fr/item/SM_1982_43_1_a6/

[1] Khelaya L. G., “O nekotorykh tsepnykh operatsiyakh”, Soob. AN Gruz. SSR, 96:3 (1979), 529–532 | MR | Zbl

[2] May T. P., The geometry of iterated loop spaces, Lecture Notes in Math., 271, 1972 | MR | Zbl

[3] Stasheff J. D., “Homotopy associativity of $H$-spaces”, Trans. Amer. Math. Soc., 108:2 (1963), 275–312 | DOI | MR | Zbl

[4] Kadeishvili T. V., “K teorii gomologii rassloennykh prostranstv”, UMN, 35:3 (1980), 183–188 | MR | Zbl

[5] Smirnov V. A., “Gomologii rassloennykh prostranstv”, UMN, 35:3 (1980), 227–230 | MR | Zbl

[6] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR

[7] Bordman Dzh., Fogt R., Gomotopicheski invariantnye algebraicheskie struktury na topologicheskikh prostranstvakh, Mir, M., 1977 | MR

[8] Gugenheim V. K. A. M., May T. P., “On the theory and applications of differatiable torsion products”, Mem. Amer. Math. Soc., 142 (1974) | MR | Zbl