On the limit behavior of the domain of dependence of a~hyperbolic equation with rapidly oscillating coefficients
Sbornik. Mathematics, Tome 43 (1982) no. 1, pp. 117-131
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, the behavior of the support of the solution to the Cauchy problem for a hyperbolic equation of the form
$$
\frac{\partial^2}{\partial t^2}u^\varepsilon(x, t)-\frac\partial{\partial x_i}a_{ij}\biggl(\frac x\varepsilon\biggr)\frac\partial{\partial x_j}u^\varepsilon+b_i\biggl(x, \frac x\varepsilon\biggr)\frac\partial{\partial x_i}u^\varepsilon+c\biggl(x, \frac x\varepsilon\biggr)u^\varepsilon=0
$$
with periodic, rapidly oscillating coefficients $a_{ij}(y)$ and small parameter $\varepsilon$, is studied. It is proved that, for small $\varepsilon$, the domain of dependence of this equation is close to some convex cone with rectilinear generators.
In the case when the coefficients $a_{ij}$ depend essentially on only one argument, e.g. $y_1$, this limit cone can be found explicitly. Its construction uses the Hamiltonian, which does not depend on $\varepsilon$ and does not correspond to any differential operator.
Bibliography: 8 titles.
@article{SM_1982_43_1_a5,
author = {A. L. Piatnitski},
title = {On the limit behavior of the domain of dependence of a~hyperbolic equation with rapidly oscillating coefficients},
journal = {Sbornik. Mathematics},
pages = {117--131},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {1982},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1982_43_1_a5/}
}
TY - JOUR AU - A. L. Piatnitski TI - On the limit behavior of the domain of dependence of a~hyperbolic equation with rapidly oscillating coefficients JO - Sbornik. Mathematics PY - 1982 SP - 117 EP - 131 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1982_43_1_a5/ LA - en ID - SM_1982_43_1_a5 ER -
A. L. Piatnitski. On the limit behavior of the domain of dependence of a~hyperbolic equation with rapidly oscillating coefficients. Sbornik. Mathematics, Tome 43 (1982) no. 1, pp. 117-131. http://geodesic.mathdoc.fr/item/SM_1982_43_1_a5/