On the limit behavior of the domain of dependence of a hyperbolic equation with rapidly oscillating coefficients
Sbornik. Mathematics, Tome 43 (1982) no. 1, pp. 117-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the behavior of the support of the solution to the Cauchy problem for a hyperbolic equation of the form $$ \frac{\partial^2}{\partial t^2}u^\varepsilon(x, t)-\frac\partial{\partial x_i}a_{ij}\biggl(\frac x\varepsilon\biggr)\frac\partial{\partial x_j}u^\varepsilon+b_i\biggl(x, \frac x\varepsilon\biggr)\frac\partial{\partial x_i}u^\varepsilon+c\biggl(x, \frac x\varepsilon\biggr)u^\varepsilon=0 $$ with periodic, rapidly oscillating coefficients $a_{ij}(y)$ and small parameter $\varepsilon$, is studied. It is proved that, for small $\varepsilon$, the domain of dependence of this equation is close to some convex cone with rectilinear generators. In the case when the coefficients $a_{ij}$ depend essentially on only one argument, e.g. $y_1$, this limit cone can be found explicitly. Its construction uses the Hamiltonian, which does not depend on $\varepsilon$ and does not correspond to any differential operator. Bibliography: 8 titles.
@article{SM_1982_43_1_a5,
     author = {A. L. Piatnitski},
     title = {On the limit behavior of the domain of dependence of a~hyperbolic equation with rapidly oscillating coefficients},
     journal = {Sbornik. Mathematics},
     pages = {117--131},
     year = {1982},
     volume = {43},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_1_a5/}
}
TY  - JOUR
AU  - A. L. Piatnitski
TI  - On the limit behavior of the domain of dependence of a hyperbolic equation with rapidly oscillating coefficients
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 117
EP  - 131
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_1_a5/
LA  - en
ID  - SM_1982_43_1_a5
ER  - 
%0 Journal Article
%A A. L. Piatnitski
%T On the limit behavior of the domain of dependence of a hyperbolic equation with rapidly oscillating coefficients
%J Sbornik. Mathematics
%D 1982
%P 117-131
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1982_43_1_a5/
%G en
%F SM_1982_43_1_a5
A. L. Piatnitski. On the limit behavior of the domain of dependence of a hyperbolic equation with rapidly oscillating coefficients. Sbornik. Mathematics, Tome 43 (1982) no. 1, pp. 117-131. http://geodesic.mathdoc.fr/item/SM_1982_43_1_a5/

[1] Bakhvalov N. S., “Osrednenie uravnenii s chastnymi proizvodnymi s bystroostsilliruyuschimi koeffitsientami”, DAN SSSR, 221:3 (1975), 516–519 | MR | Zbl

[2] Bensoussan A., Lions J.-L., Papanicolaou G., Asimptotic analysis for periodic structures, North-Holland Publ. Comp., 1978 | MR

[3] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1976 | Zbl

[4] Duistermaat J. J., Fourier integral operators, Courant Institute of Math. Sciences, New York University, 1973 | MR | Zbl

[5] Kolmogorov A. H., “O sokhranenii uslovno-periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, DAN SSSR, KhSVIII:4 (1954), 527–530 | MR

[6] Arnold V. I., “Dokazatelstvo teoremy A. N. Kolmogorova o sokhranenii uslovno-periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, UMN, XVIII:5 (1963), 13–39

[7] Lione Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[8] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR