An example of a~Kubo--Martin--Schwinger state for a~nonlinear classical poisson system with infinite-dimensional phase space
Sbornik. Mathematics, Tome 43 (1982) no. 1, pp. 103-115

Voir la notice de l'article provenant de la source Math-Net.Ru

A “smoothed” nonlinear Klein–Gordon equation is regarded as the equation of evolution of a classical dynamical system with an infinite-dimensional phase space. It is proved that the wave operators are canonical transformations of this system that linearize it. It is shown that a Gaussian measure induces a Kubo–Martin–Schwinger state for the linear system, and that the preimage of this measure under the canonical transformation implemented by a wave operator is a Kubo–Martin–Schwinger state for the original nonlinear system. Bibliography: 8 titles.
@article{SM_1982_43_1_a4,
     author = {A. A. Arsen'ev},
     title = {An example of {a~Kubo--Martin--Schwinger} state for a~nonlinear classical poisson system with infinite-dimensional phase space},
     journal = {Sbornik. Mathematics},
     pages = {103--115},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_1_a4/}
}
TY  - JOUR
AU  - A. A. Arsen'ev
TI  - An example of a~Kubo--Martin--Schwinger state for a~nonlinear classical poisson system with infinite-dimensional phase space
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 103
EP  - 115
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_1_a4/
LA  - en
ID  - SM_1982_43_1_a4
ER  - 
%0 Journal Article
%A A. A. Arsen'ev
%T An example of a~Kubo--Martin--Schwinger state for a~nonlinear classical poisson system with infinite-dimensional phase space
%J Sbornik. Mathematics
%D 1982
%P 103-115
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_43_1_a4/
%G en
%F SM_1982_43_1_a4
A. A. Arsen'ev. An example of a~Kubo--Martin--Schwinger state for a~nonlinear classical poisson system with infinite-dimensional phase space. Sbornik. Mathematics, Tome 43 (1982) no. 1, pp. 103-115. http://geodesic.mathdoc.fr/item/SM_1982_43_1_a4/