An example of a Kubo–Martin–Schwinger state for a nonlinear classical poisson system with infinite-dimensional phase space
Sbornik. Mathematics, Tome 43 (1982) no. 1, pp. 103-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A “smoothed” nonlinear Klein–Gordon equation is regarded as the equation of evolution of a classical dynamical system with an infinite-dimensional phase space. It is proved that the wave operators are canonical transformations of this system that linearize it. It is shown that a Gaussian measure induces a Kubo–Martin–Schwinger state for the linear system, and that the preimage of this measure under the canonical transformation implemented by a wave operator is a Kubo–Martin–Schwinger state for the original nonlinear system. Bibliography: 8 titles.
@article{SM_1982_43_1_a4,
     author = {A. A. Arsen'ev},
     title = {An example of {a~Kubo{\textendash}Martin{\textendash}Schwinger} state for a~nonlinear classical poisson system with infinite-dimensional phase space},
     journal = {Sbornik. Mathematics},
     pages = {103--115},
     year = {1982},
     volume = {43},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_1_a4/}
}
TY  - JOUR
AU  - A. A. Arsen'ev
TI  - An example of a Kubo–Martin–Schwinger state for a nonlinear classical poisson system with infinite-dimensional phase space
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 103
EP  - 115
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_1_a4/
LA  - en
ID  - SM_1982_43_1_a4
ER  - 
%0 Journal Article
%A A. A. Arsen'ev
%T An example of a Kubo–Martin–Schwinger state for a nonlinear classical poisson system with infinite-dimensional phase space
%J Sbornik. Mathematics
%D 1982
%P 103-115
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1982_43_1_a4/
%G en
%F SM_1982_43_1_a4
A. A. Arsen'ev. An example of a Kubo–Martin–Schwinger state for a nonlinear classical poisson system with infinite-dimensional phase space. Sbornik. Mathematics, Tome 43 (1982) no. 1, pp. 103-115. http://geodesic.mathdoc.fr/item/SM_1982_43_1_a4/

[1] Kubo R., “Statistical mechanical theory of irreversible Proc. I”, J. Phys. Soc. Japan, 12 (1957), 570 | DOI | MR | Zbl

[2] Aizenman M., Goldstein S., Gruber C, Lebowitz J. L., Martin P., “On the equivalence between $KMS$-states and equilibrium states for classical systems”, Comm. Math. Phys., 53:3 (1977), 209–220 | DOI | MR

[3] Pulvirenti M., Riela G., “$KMS$ condition for stable states of infinite classical systems”, J. Math. Phys., 18:12 (1977), 2364–2367 | DOI | MR | Zbl

[4] Arsenev A. A., O edinstvennosti sostoyanii Kubo–Martina–Shvingera dlya klassicheskikh dinamicheskikh sistem s beskonechnomernym fazovym prostranstvom, Preprint IPM, No 90, 1979

[5] Morawetz C., Strauss W. A., “Decay and scattering of solutions of a nonlinear relativists wave equation”, Comm. Pure Appl. Math., 25:1 (1972), 1–31 | DOI | MR | Zbl

[6] Strauss W. A., “Decay and asymptotics for $\square u=F(u)$”, J. Funct. Anal., 2:4 (1968), 409–457 | DOI | MR | Zbl

[7] Segal I., “Differential operators in the manifold of solutions of a non-linear differential equation”, J. Math. Pure et Appl., 44:1 (1965), 71–105 ; 2, 107–132 | MR

[8] Chernoff P. R., Mars den J. E., “Properties of infinite dimentional Hamiltonian systems”, Lecture Notes in Math., 425, 1974 | MR | Zbl