Representations of the symmetric group and varieties of linear algebras
Sbornik. Mathematics, Tome 43 (1982) no. 1, pp. 85-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The representation theory of the symmetric group is used to study varieties of linear algebras over a field of characteristic 0. The relatively free algebras and the lattice of subvarieties of the variety of Lie algebras $\mathfrak{AN}_2\cap\mathfrak N_2\mathfrak A$ are described. An example of an almost finitely based variety of linear algebras if constructed. A continuous set of locally finite varieties forming a chain with respect to inclusion is indicated. Information is obtained on the variety of Lie algebras (resp., associative algebras with 1) generated by the second-order matrix algebra. In particular, distributivity of the lattice of subvarieties is proved, and in the Lie case a relatively free algebra is described. Bibliography: 16 titles.
@article{SM_1982_43_1_a3,
     author = {V. S. Drenski},
     title = {Representations of the symmetric group and varieties of linear algebras},
     journal = {Sbornik. Mathematics},
     pages = {85--101},
     year = {1982},
     volume = {43},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_1_a3/}
}
TY  - JOUR
AU  - V. S. Drenski
TI  - Representations of the symmetric group and varieties of linear algebras
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 85
EP  - 101
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_1_a3/
LA  - en
ID  - SM_1982_43_1_a3
ER  - 
%0 Journal Article
%A V. S. Drenski
%T Representations of the symmetric group and varieties of linear algebras
%J Sbornik. Mathematics
%D 1982
%P 85-101
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1982_43_1_a3/
%G en
%F SM_1982_43_1_a3
V. S. Drenski. Representations of the symmetric group and varieties of linear algebras. Sbornik. Mathematics, Tome 43 (1982) no. 1, pp. 85-101. http://geodesic.mathdoc.fr/item/SM_1982_43_1_a3/

[1] Specht W., “Gesetze in Ringen. I”, Math. Z., 52:5 (1950), 557–589 | DOI | MR | Zbl

[2] Bakhturin Yu. A., “O tozhdestvakh v metabelevykh algebrakh Li”, Trudy sem. im. I. G. Petrovskogo, 1975, no. 1, 45–56 | Zbl

[3] Kuzmin Yu. V., “Svobodnye tsentralno-metabelevy gruppy, algebry Li i $D$-gruppy”, Izv. AN SSSR, ser. matem., 41 (1977), 3–33 | MR

[4] Mischenko S. P., “Mnogoobraziya tsentralno-metabelevykh algebr Li nad polem kharakteristiki nul”, Matem. zametki, 30 (1981) | Zbl

[5] Artamonov V. L., “Reshetki mnogoobrazii lineinykh algebr”, UMN, 33:2(200) (1980), 135–167 | MR

[6] Oates-Macdonald S., Vaughan-Lee M. R., “Varieties that make one cross”, J. Austral. Math. Soc., A26 (1978), 368–382 | DOI | MR

[7] Olshanskii A. Yu., “O nekotorykh beskonechnykh sistemakh tozhdestv”, Trudy sem. im. I. G. Petrovskogo, 1978, no. 3, 139–146 | MR

[8] Drenski V. S., Razreshimye mnogoobraziya algebr Li, Dis. na soiskanie uch. st. kand. fiz.-matem. nauk, M., 1979

[9] Razmyslov Yu. P., “O konechnoi baziruemosti tozhdestv matrichnoi algebry vtorogo poryadka nad polem kharakteristiki nul”, Algebra i logika, 12:1 (1973), 83–113 | MR | Zbl

[10] Razmyslov Yu. P., “Konechnaya baziruemost nekotorykh mnogoobrazii algebr”, Algebra i logika, 13:6 (1974), 685–693 | MR | Zbl

[11] Vakhturin Yu. A., “Tozhdestva ot dvukh peremennykh v algebre Li $\mathrm{sl}(2,k)$”, Trudy sem. im. I. G. Petrovskogo, 1979, no. 5, 205–208

[12] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, M., Nauka | MR

[13] Veil G., Klassicheskie gruppy, ikh invarianty i predstavleniya, IL, M., 1947

[14] Kerber A., “Representations of permutation group. I”, Lecture Notes in Math., 240, 1971 | MR | Zbl

[15] Ananin A. Z., Kemer A. R., “Mnogoobraziya assotsiativnykh algebr, reshetki podmnogoobrazii kotorykh distributivny”, Sib. matem. zh., 17:4 (1976), 723–730 | MR

[16] Shmelkin A. L., “Spleteniya algebr Li i ikh primenenie v teorii grupp”, Trudy Mosk. matem. ob-va, 29 (1973), 247–260