Theorems of Wiman–Valiron type for solutions of parabolic equations
Sbornik. Mathematics, Tome 43 (1982) no. 1, pp. 63-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper estimates of Wiman–Valiron type are established for solutions of evolution equations of the form \begin{equation} u'(t)+A(t)u(t)=0 \end{equation} in a Hilbert space, where $A(t)$ is a positive definite selfadjoint operator with discrete spectrum. In the case of a constant operator $A$ the results characterize the rate of growth of the function $\|u(t)\|$ as $t\to+0$ in terms of the rate of growth of the Fourier coefficients of the initial data. Bibliography: 18 titles.
@article{SM_1982_43_1_a2,
     author = {N. M. Suleimanov},
     title = {Theorems of {Wiman{\textendash}Valiron} type for solutions of parabolic equations},
     journal = {Sbornik. Mathematics},
     pages = {63--84},
     year = {1982},
     volume = {43},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_1_a2/}
}
TY  - JOUR
AU  - N. M. Suleimanov
TI  - Theorems of Wiman–Valiron type for solutions of parabolic equations
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 63
EP  - 84
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_1_a2/
LA  - en
ID  - SM_1982_43_1_a2
ER  - 
%0 Journal Article
%A N. M. Suleimanov
%T Theorems of Wiman–Valiron type for solutions of parabolic equations
%J Sbornik. Mathematics
%D 1982
%P 63-84
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1982_43_1_a2/
%G en
%F SM_1982_43_1_a2
N. M. Suleimanov. Theorems of Wiman–Valiron type for solutions of parabolic equations. Sbornik. Mathematics, Tome 43 (1982) no. 1, pp. 63-84. http://geodesic.mathdoc.fr/item/SM_1982_43_1_a2/

[1] Wirnan W., “Über dem Zusammenhang zwischen dem Maximalbetrage einer analitischen Function und dem grossen Gliede der zugehorigen Taylorschen Reihe”, Acta Math., 37 (1914), 305–326 | DOI | MR

[2] Valiron Zh., Analiticheskie funktsii, Gostekhizdat, M., 1957

[3] Vittikh G., Noveishie issledovaniya po odnoznachnym analiticheskim funktsiyam, Fizmatgiz, M., 1960 | MR

[4] Rosenbloom P. C., “Probability and entire functions”, Studies in Math. Analysis and related topics, Stanford, 1962 | MR

[5] Suleimanov N. M., “Ob otsenkakh tipa Vimana–Valirona dlya reshenii obratno-parabolicheskikh uravnenii”, DAN SSSR, 236:6 (1977), 1315–1318 | MR | Zbl

[6] Suleimanov N. M., “Ob odnom obyknovennom differentsialnom neravenstve i teoreme Vimana–Valirona o tselykh funktsiyakh”, DAN Azerb. SSR, 34:1 (1978), 3–5 | MR | Zbl

[7] Suleimanov N. M., “Ob otsenkakh tipa Vimana–Valirona dlya reshenii parabolicheskikh uravnenii”, DAN SSSR, 250:3 (1980), 577 | MR | Zbl

[8] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, Fizmatgiz, M., 1962 | MR

[9] Gorbachuk V. I., Gorbachuk M. L., “Granichnye znacheniya reshenii nekotorykh klassov differentsialnykh uravnenii”, Matem. sb., 102 (144) (1977), 124–150 | Zbl

[10] Avakumovič V. G., “Über die Eigenfunction auf geschlossenen Rimannschen Mannigfaltigkeiten”, Math. Z., 65 (1956), 327–344 | DOI | MR | Zbl

[11] Seeley R. T., “A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of $R^3$”, Advances Math., 29:2 (1978), 244–269 | DOI | MR | Zbl

[12] Hörmander L., “On the Riecz means of spectral functions and eigenf unctions expansion of elliptic operators”, Acta Math., 121 (1968), 193–218 | DOI | MR | Zbl

[13] Ilin V. A., Io I., “Ravnomernaya otsenka sobstvennykh funktsii i otsenka sverkhu chisla sobstvennykh znachenii operatora Shturma–Liuvillya”, DAN SSSR, 243:5 (1978), 1113–1115 | MR

[14] Agmon S., Kannai Y., “On the asymptotic behaviour of spectral function and resolvent kernels of elliptic operators”, Israel J. Math., 5:1 (1967), 1–30 | DOI | MR | Zbl

[15] Clark C., “The asymptotic distribution of eigenvalues and eigenf unctions for eliliptic boundary value problems”, SI AM Rev., 9:4 (1967), 627–646 | DOI | MR | Zbl

[16] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra differentsialnykh uravnenii”, Itogi nauki i tekhniki. Matematicheskii analiz, 14, VINITI, M., 1977, 5–88 | MR

[17] Gelfand I. M., Shilov G. E., Obobschennye funktsii, Fizmatgiz, M., 1958

[18] Ivrii V. Ya., “O vtorom chlene spektralnoi asimptotiki dlya operatora Laplasa–Beltrami na mnogoobraziyakh s kraem”, DAN SSSR, 250:6 (1980), 1300–1302 | MR | Zbl