Theorems of Wiman--Valiron type for solutions of parabolic equations
Sbornik. Mathematics, Tome 43 (1982) no. 1, pp. 63-84
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper estimates of Wiman–Valiron type are established for solutions of evolution equations of the form
\begin{equation}
u'(t)+A(t)u(t)=0
\end{equation}
in a Hilbert space, where $A(t)$ is a positive definite selfadjoint operator with discrete spectrum. In the case of a constant operator $A$ the results characterize the rate of growth of the function $\|u(t)\|$ as $t\to+0$ in terms of the rate of growth of the Fourier coefficients of the initial data.
Bibliography: 18 titles.
@article{SM_1982_43_1_a2,
author = {N. M. Suleimanov},
title = {Theorems of {Wiman--Valiron} type for solutions of parabolic equations},
journal = {Sbornik. Mathematics},
pages = {63--84},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {1982},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1982_43_1_a2/}
}
N. M. Suleimanov. Theorems of Wiman--Valiron type for solutions of parabolic equations. Sbornik. Mathematics, Tome 43 (1982) no. 1, pp. 63-84. http://geodesic.mathdoc.fr/item/SM_1982_43_1_a2/