Finite groups in which the centralizers of elements of order three are nilpotent
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 42 (1982) no. 4, pp. 569-575
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper it is proved that a finite group of 3-rank 1, in which the soluble radical is trivial and the centralizers of elements of order 3 are nilpotent, is isomorphic to one of the following groups: $L_3(4)$, $L_3^*(4)$, $PGL(2, 3^n)$ or $H(3^n)$, $n\geqslant2$.
Bibliography: 12 titles.
			
            
            
            
          
        
      @article{SM_1982_42_4_a6,
     author = {V. R. Maier},
     title = {Finite groups in which the centralizers of elements of order three are nilpotent},
     journal = {Sbornik. Mathematics},
     pages = {569--575},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_4_a6/}
}
                      
                      
                    V. R. Maier. Finite groups in which the centralizers of elements of order three are nilpotent. Sbornik. Mathematics, Tome 42 (1982) no. 4, pp. 569-575. http://geodesic.mathdoc.fr/item/SM_1982_42_4_a6/
