Finite groups in which the centralizers of elements of order three are nilpotent
Sbornik. Mathematics, Tome 42 (1982) no. 4, pp. 569-575

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that a finite group of 3-rank 1, in which the soluble radical is trivial and the centralizers of elements of order 3 are nilpotent, is isomorphic to one of the following groups: $L_3(4)$, $L_3^*(4)$, $PGL(2, 3^n)$ or $H(3^n)$, $n\geqslant2$. Bibliography: 12 titles.
@article{SM_1982_42_4_a6,
     author = {V. R. Maier},
     title = {Finite groups in which the centralizers of elements of order three are nilpotent},
     journal = {Sbornik. Mathematics},
     pages = {569--575},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_4_a6/}
}
TY  - JOUR
AU  - V. R. Maier
TI  - Finite groups in which the centralizers of elements of order three are nilpotent
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 569
EP  - 575
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_42_4_a6/
LA  - en
ID  - SM_1982_42_4_a6
ER  - 
%0 Journal Article
%A V. R. Maier
%T Finite groups in which the centralizers of elements of order three are nilpotent
%J Sbornik. Mathematics
%D 1982
%P 569-575
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_42_4_a6/
%G en
%F SM_1982_42_4_a6
V. R. Maier. Finite groups in which the centralizers of elements of order three are nilpotent. Sbornik. Mathematics, Tome 42 (1982) no. 4, pp. 569-575. http://geodesic.mathdoc.fr/item/SM_1982_42_4_a6/