Finite groups in which the centralizers of elements of order three are nilpotent
Sbornik. Mathematics, Tome 42 (1982) no. 4, pp. 569-575 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper it is proved that a finite group of 3-rank 1, in which the soluble radical is trivial and the centralizers of elements of order 3 are nilpotent, is isomorphic to one of the following groups: $L_3(4)$, $L_3^*(4)$, $PGL(2, 3^n)$ or $H(3^n)$, $n\geqslant2$. Bibliography: 12 titles.
@article{SM_1982_42_4_a6,
     author = {V. R. Maier},
     title = {Finite groups in which the centralizers of elements of order three are nilpotent},
     journal = {Sbornik. Mathematics},
     pages = {569--575},
     year = {1982},
     volume = {42},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_4_a6/}
}
TY  - JOUR
AU  - V. R. Maier
TI  - Finite groups in which the centralizers of elements of order three are nilpotent
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 569
EP  - 575
VL  - 42
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1982_42_4_a6/
LA  - en
ID  - SM_1982_42_4_a6
ER  - 
%0 Journal Article
%A V. R. Maier
%T Finite groups in which the centralizers of elements of order three are nilpotent
%J Sbornik. Mathematics
%D 1982
%P 569-575
%V 42
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1982_42_4_a6/
%G en
%F SM_1982_42_4_a6
V. R. Maier. Finite groups in which the centralizers of elements of order three are nilpotent. Sbornik. Mathematics, Tome 42 (1982) no. 4, pp. 569-575. http://geodesic.mathdoc.fr/item/SM_1982_42_4_a6/

[1] Busarkin V. M., “Konechnye gruppy s abelevymi tsentralizatorami elementov nechetnogo poryadka”, Algebra i logika, 16:4 (1977), 381–388 | MR | Zbl

[2] Kabanov V. V., Starostin A. I., “Konechnye gruppy, v kotorykh silovskaya 2-podgruppa tsentralizatora nekotoroi involyutsii poryadka 16”, Matem. zametki, 18:6 (1975), 869–876 | MR | Zbl

[3] Maier V. R., “O konechnykh gruppakh s abelevymi tsentralizatorami elementov nechetnogo poryadka”, Sib. matem. zh., 26:3 (1975), 549–559 | MR

[4] Podufalov N. D., “Konechnye prostye gruppy bez elementov poryadka 6”, Algebra i logika, 16:2 (1977), 200–203 | MR | Zbl

[5] Syskin S. A., “Konechnye gruppy s primarnymi tsentralizatorami chetvernykh podgrupp”, Izv. AN SSSR, ser. matem., 42 (1978), 1132–1150 | MR | Zbl

[6] Aschbacher M., “A characterisation of Chevalley groups over fields of odd order. II”, Ann. Math., 106:3 (1977), 399–468 | DOI | MR | Zbl

[7] Aschbacher M., Seitz G., “On groups with a standard component of known type”, Osaka. J. Math., 13 (1976), 439–482 | MR | Zbl

[8] Dickson N. K., “Groups with dihedral 3-normalizers of order 4k. I, II”, J. Algebra, 54:2 (1978), 390–409, 410–443 | DOI | MR | Zbl

[9] Goldschmidt D. M., “2-fusion in finite groups”, Ann. Math., 99:1 (1974), 70–117 | DOI | MR | Zbl

[10] Gorenstein D., Finite groups, Harper and Row, New York, 1968 | MR | Zbl

[11] Gorenstein D., Haroda K., “Finite groups 2-subgroups are generated by at most 4 elements”, Memoirs Amer. Math. Soc., 1974, no. 147, 1–464

[12] Finite Simple Groups, eds. Powell M. B., Higman G., London and New York, 1971 | MR