On the limit distribution of the number of cycles and the logarithm of the order of a class of permutations
Sbornik. Mathematics, Tome 42 (1982) no. 4, pp. 539-567
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $S_n$ be the symmetric group of degree $n$ and let $S_n^{(k)}$ be the set of permutations $a\in S_n$ such that the equation $x^k=a$ has a solution $x\in S_n$. Consider the uniform probability distribution on the set $S_n^{(k)}$. This article investigates the limit distributions on $S_n^{(k)}$, as $n\to\infty$ and for fixed $k\geqslant2$, of the random variables $\xi_s$, $\eta$, and $\zeta$, where $\xi_s$ is the number of cycles of length $s$, $\eta$ is the number of all cycles, and $\zeta$ is the logarithm of the order of a random permutation $a\in S_n^{(k)}$. Bibliography: 5 titles.
@article{SM_1982_42_4_a5,
author = {A. I. Pavlov},
title = {On the limit distribution of the number of cycles and the logarithm of the order of a~class of permutations},
journal = {Sbornik. Mathematics},
pages = {539--567},
year = {1982},
volume = {42},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1982_42_4_a5/}
}
A. I. Pavlov. On the limit distribution of the number of cycles and the logarithm of the order of a class of permutations. Sbornik. Mathematics, Tome 42 (1982) no. 4, pp. 539-567. http://geodesic.mathdoc.fr/item/SM_1982_42_4_a5/
[1] Miyaeev M. Ya., Pavlov L. I., “O chisle podstanovok spetsialnogo vida”, Matem. sb., 99 (141) (1976), 468–476 | MR
[2] Goncharov V. L., “Iz oblasti kombinatoriki”, Izv. AN SSSR, ser. matem., 8 (1944), 3–48
[3] Erdös P., Turan P., “On some problems of a statistical grouptheory. III”, Acta math. Acad. sci. hung., 18:3–4 (1967), 309–320 | DOI | MR | Zbl
[4] Best M. R., “The distribution of some variables on a summetric groups”, Proc. Kon. ned. akad. wetensch, A73:5 (1970), 385–402 | MR
[5] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR