On uniform approximation of functions by Fourier sums
Sbornik. Mathematics, Tome 42 (1982) no. 4, pp. 515-538

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies traditional problems on uniform approximation of a continuous $2\pi$-periodic function $f$ by its $n$th Fourier sums $S_n(f)$. To this end the deviation $\|f-S_n(f)\|_{C_{2\pi}}$ is estimated in terms of some new functional characteristics. As an application of the estimates a number of known results (due to Lebesgue, Salem, Stechkin, Ul'yanov, Oskolkov, and others) are obtained. Bibliography: 18 titles.
@article{SM_1982_42_4_a4,
     author = {E. A. Sevast'yanov},
     title = {On uniform approximation of functions by {Fourier} sums},
     journal = {Sbornik. Mathematics},
     pages = {515--538},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_4_a4/}
}
TY  - JOUR
AU  - E. A. Sevast'yanov
TI  - On uniform approximation of functions by Fourier sums
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 515
EP  - 538
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_42_4_a4/
LA  - en
ID  - SM_1982_42_4_a4
ER  - 
%0 Journal Article
%A E. A. Sevast'yanov
%T On uniform approximation of functions by Fourier sums
%J Sbornik. Mathematics
%D 1982
%P 515-538
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_42_4_a4/
%G en
%F SM_1982_42_4_a4
E. A. Sevast'yanov. On uniform approximation of functions by Fourier sums. Sbornik. Mathematics, Tome 42 (1982) no. 4, pp. 515-538. http://geodesic.mathdoc.fr/item/SM_1982_42_4_a4/