On the structure of $\mathscr H_{n-1}$-almost everywhere convex hypersurfaces in $\mathbf R^{n+1}$
Sbornik. Mathematics, Tome 42 (1982) no. 4, pp. 451-460

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a hypersurface $F$ imbedded in $\mathbf R^{n+1}$, $n\geqslant2$, which is locally convex at all points except for a closed set $E$ with $(n-1)$-dimensional Hausdorff measure $\mathscr H_{n-1}(E)$, and strictly convex near $E$ is in fact locally convex everywhere. The author also gives various corollaries. In particular, let $M$ be a complete two-dimensional Riemannian manifold of nonnegative curvature $K$ and $E\subset M$ a closed subset for which $\mathscr H_1(E)=0$. Assume further that there exists a neighborhood $U\supset E$ such that $K(x)>0$ for $x\in U\setminus E$, $f\colon M\to\mathbf R^3$ is such that $f|_{U\setminus E}$ is an imbedding, and $f|_{M\setminus E}\in C^{1,\alpha}$, $\alpha>2/3$. Then $f(M)$ is a complete convex surface in $\mathbf R^3$. This result is an generalization of results in the paper reviewed in RZh Mat, 1973, 7A724. Bibliography: 19 titles.
@article{SM_1982_42_4_a1,
     author = {V. G. Dmitriev},
     title = {On the structure of $\mathscr H_{n-1}$-almost everywhere convex hypersurfaces in $\mathbf R^{n+1}$},
     journal = {Sbornik. Mathematics},
     pages = {451--460},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_4_a1/}
}
TY  - JOUR
AU  - V. G. Dmitriev
TI  - On the structure of $\mathscr H_{n-1}$-almost everywhere convex hypersurfaces in $\mathbf R^{n+1}$
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 451
EP  - 460
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_42_4_a1/
LA  - en
ID  - SM_1982_42_4_a1
ER  - 
%0 Journal Article
%A V. G. Dmitriev
%T On the structure of $\mathscr H_{n-1}$-almost everywhere convex hypersurfaces in $\mathbf R^{n+1}$
%J Sbornik. Mathematics
%D 1982
%P 451-460
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_42_4_a1/
%G en
%F SM_1982_42_4_a1
V. G. Dmitriev. On the structure of $\mathscr H_{n-1}$-almost everywhere convex hypersurfaces in $\mathbf R^{n+1}$. Sbornik. Mathematics, Tome 42 (1982) no. 4, pp. 451-460. http://geodesic.mathdoc.fr/item/SM_1982_42_4_a1/