On differentiability properties of the symbol of a~multidimensional singular integral operator
Sbornik. Mathematics, Tome 42 (1982) no. 4, pp. 427-450

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ be the characteristic and $\Phi$ the symbol of $n$-dimensional singular integral operator, let $\delta$ be the Beltrami operator on the sphere $S^{n-1}$ of the space $\mathbf R^n$, and let $H^l_p(S^{n-1})$ be the space of Bessel potentials on this sphere with norm $$ \|g\|_{H^l_p(S^{n-1})}=\|(E+\delta)^{l/2}g\|_{L_p(S^{n-1})}, $$ where $E$ is the identity operator. The differentiability properties of the symbol in the spaces $H^l_p(S^{n-1})$ were studied earlier in the case $p=2$. In this paper it is proved that in the case $p\in(1, \infty)$, $p\ne2$, the following assertions hold: a) If $f\in L_p(S^{n-1})$, then $\Phi\in H^\alpha_p(S^{n-1})$, $\alpha\frac n2-|\frac 1p-\frac 12|(n-2)$, while this assertion fails to hold for any $\alpha>\frac n2-|\frac 1p-\frac 12|(n-2)$. b) If $\Phi\in H^\nu_p(S^{n-1})$, where $\nu>\frac n2+|\frac 1p-\frac 12|(n-2)$, then $f\in L_p(S^{n-1})$, while this assertion fails to hold for any $\nu\frac n2+|\frac 1p-\frac 12|(n-2)$. From these results it follows that for the range $R(\Phi)$ of the symbol $\Phi$ with characteristic $f\in L_p(S^{n-1})$ the inclusions $H^\nu_p\subset R(\Phi)\subset H^\alpha_p$ hold, and, in contrast to the case $p=2$, a more precise description of $R(\Phi)$ in terms of the spaces $H^l_p(S^{n-1})$ is not possible. Bibliography: 21 titles.
@article{SM_1982_42_4_a0,
     author = {A. D. Gadzhiev},
     title = {On differentiability properties of the symbol of a~multidimensional singular integral operator},
     journal = {Sbornik. Mathematics},
     pages = {427--450},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_4_a0/}
}
TY  - JOUR
AU  - A. D. Gadzhiev
TI  - On differentiability properties of the symbol of a~multidimensional singular integral operator
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 427
EP  - 450
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_42_4_a0/
LA  - en
ID  - SM_1982_42_4_a0
ER  - 
%0 Journal Article
%A A. D. Gadzhiev
%T On differentiability properties of the symbol of a~multidimensional singular integral operator
%J Sbornik. Mathematics
%D 1982
%P 427-450
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_42_4_a0/
%G en
%F SM_1982_42_4_a0
A. D. Gadzhiev. On differentiability properties of the symbol of a~multidimensional singular integral operator. Sbornik. Mathematics, Tome 42 (1982) no. 4, pp. 427-450. http://geodesic.mathdoc.fr/item/SM_1982_42_4_a0/