On differentiability properties of the symbol of a multidimensional singular integral operator
Sbornik. Mathematics, Tome 42 (1982) no. 4, pp. 427-450 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $f$ be the characteristic and $\Phi$ the symbol of $n$-dimensional singular integral operator, let $\delta$ be the Beltrami operator on the sphere $S^{n-1}$ of the space $\mathbf R^n$, and let $H^l_p(S^{n-1})$ be the space of Bessel potentials on this sphere with norm $$ \|g\|_{H^l_p(S^{n-1})}=\|(E+\delta)^{l/2}g\|_{L_p(S^{n-1})}, $$ where $E$ is the identity operator. The differentiability properties of the symbol in the spaces $H^l_p(S^{n-1})$ were studied earlier in the case $p=2$. In this paper it is proved that in the case $p\in(1, \infty)$, $p\ne2$, the following assertions hold: a) If $f\in L_p(S^{n-1})$, then $\Phi\in H^\alpha_p(S^{n-1})$, $\alpha<\frac n2-|\frac 1p-\frac 12|(n-2)$, while this assertion fails to hold for any $\alpha>\frac n2-|\frac 1p-\frac 12|(n-2)$. b) If $\Phi\in H^\nu_p(S^{n-1})$, where $\nu>\frac n2+|\frac 1p-\frac 12|(n-2)$, then $f\in L_p(S^{n-1})$, while this assertion fails to hold for any $\nu<\frac n2+|\frac 1p-\frac 12|(n-2)$. From these results it follows that for the range $R(\Phi)$ of the symbol $\Phi$ with characteristic $f\in L_p(S^{n-1})$ the inclusions $H^\nu_p\subset R(\Phi)\subset H^\alpha_p$ hold, and, in contrast to the case $p=2$, a more precise description of $R(\Phi)$ in terms of the spaces $H^l_p(S^{n-1})$ is not possible. Bibliography: 21 titles.
@article{SM_1982_42_4_a0,
     author = {A. D. Gadzhiev},
     title = {On differentiability properties of the symbol of a~multidimensional singular integral operator},
     journal = {Sbornik. Mathematics},
     pages = {427--450},
     year = {1982},
     volume = {42},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_4_a0/}
}
TY  - JOUR
AU  - A. D. Gadzhiev
TI  - On differentiability properties of the symbol of a multidimensional singular integral operator
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 427
EP  - 450
VL  - 42
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1982_42_4_a0/
LA  - en
ID  - SM_1982_42_4_a0
ER  - 
%0 Journal Article
%A A. D. Gadzhiev
%T On differentiability properties of the symbol of a multidimensional singular integral operator
%J Sbornik. Mathematics
%D 1982
%P 427-450
%V 42
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1982_42_4_a0/
%G en
%F SM_1982_42_4_a0
A. D. Gadzhiev. On differentiability properties of the symbol of a multidimensional singular integral operator. Sbornik. Mathematics, Tome 42 (1982) no. 4, pp. 427-450. http://geodesic.mathdoc.fr/item/SM_1982_42_4_a0/

[1] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962 | MR | Zbl

[2] Zabreiko P. P. i dr., Integralnye uravneniya, Nauka, M., 1968 | MR

[3] Agranovich M. S., “Ellipticheskie singulyarnye integro-differentsialnye operatory”, UMN, XX:5 (125) (1965), 3–120 | MR

[4] Mikhailova-Gubenko N. M., “Singulyarnye integraly v prostranstvakh Lipshitsa. II”, Vestnik LGU, 2:7 (1966), 45–57

[5] Itskovich I. A., “Obraschenie formuly Zhiro”, Uch. zap. Kishinevskogo un-ta, 11 (1954), 7–11

[6] Strichartz R. S., “Convolutions with kernels having singularities on a sphere”, Trans. Amer. Math. Soc., 148 (1970), 461–471 | DOI | MR | Zbl

[7] Stein E. M., “Interpolation of linear operators”, Trans. Amer. Math. Soc., 83 (1956), 482–492 | DOI | MR | Zbl

[8] Stein I. M., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl

[9] Seeley P. T., “Complex powers of an elliptic operators”, Proc. Simp. pure Math., 10 (1967), 288–307 | MR | Zbl

[10] Strichartz R. S., “Multipliers for spherical harmonic expansions”, Trans. Amer. Math. Soc., 167 (1972), 115–124 | DOI | MR | Zbl

[11] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959 | MR

[12] Colderon A. P., Zygmund A., “Singular integral operators and differential equations”, Amer. J. Math., 79:4 (1957), 901–921 | DOI | MR

[13] Stein I. M., Singulyarnye integraly i differenitsalnye svoistva funktsii, Mir, M., 1973 | MR

[14] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[15] Lizorkin P. I., “Obobschennoe liuvillevskoe differentsirovanie i funktsionalnye prostranstva $L_p^r(E_m)$. Teoremy vlozheniya”, Matem. sb., 60 (102) (1963), 325–353 | MR | Zbl

[16] Khardi G. G., Littlvud D. E., Polia G., Neravenstva, IL, M., 1948

[17] Ilin V. P., “Nekotorye integralnye neravenstva i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Matem. sb., 54 (96) (1961), 331–380

[18] Kon Dzh., Nirenberg L., “Algebra psevdodifferentsialnykh operatorov”, Psevdodifferentsialnye operatory, Mir, M., 1967, 9–62 | MR

[19] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1958

[20] Dvait G. B., Tablitsy integralov i drugie matematicheskie formuly, Nauka, M., 1977

[21] Gadzhiev A. D., “O svyazi svoistv simvola i kharakteristiki mnogomernogo singulyarnogo integralnogo operatora v prostranstvakh $L_p$”, DAN SSSR, 250:3 (1980), 531–534 | MR | Zbl