On differentiability properties of the symbol of a~multidimensional singular integral operator
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 42 (1982) no. 4, pp. 427-450
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $f$ be the characteristic and $\Phi$ the symbol of $n$-dimensional singular integral operator, let $\delta$ be the Beltrami operator on the sphere $S^{n-1}$ of the space $\mathbf R^n$, and let $H^l_p(S^{n-1})$ be the space of Bessel potentials on this sphere with norm 
$$
\|g\|_{H^l_p(S^{n-1})}=\|(E+\delta)^{l/2}g\|_{L_p(S^{n-1})},
$$
where $E$ is the identity operator.
The differentiability properties of the symbol in the spaces $H^l_p(S^{n-1})$ were studied earlier in the case $p=2$.
In this paper it is proved that in the case $p\in(1, \infty)$, $p\ne2$, the following assertions hold:
a) If  $f\in L_p(S^{n-1})$, then $\Phi\in H^\alpha_p(S^{n-1})$, $\alpha\frac n2-|\frac 1p-\frac 12|(n-2)$, while this assertion fails to hold for any $\alpha>\frac n2-|\frac 1p-\frac 12|(n-2)$.
b) If $\Phi\in H^\nu_p(S^{n-1})$, where $\nu>\frac n2+|\frac 1p-\frac 12|(n-2)$, then $f\in L_p(S^{n-1})$, while this assertion fails to hold for any $\nu\frac n2+|\frac 1p-\frac 12|(n-2)$.
From these results it follows that for the range $R(\Phi)$ of the symbol $\Phi$ with characteristic $f\in L_p(S^{n-1})$ the inclusions $H^\nu_p\subset R(\Phi)\subset H^\alpha_p$ hold, and, in contrast to the case $p=2$, a more precise description of $R(\Phi)$ in terms of the spaces $H^l_p(S^{n-1})$ is not possible.
Bibliography: 21 titles.
			
            
            
            
          
        
      @article{SM_1982_42_4_a0,
     author = {A. D. Gadzhiev},
     title = {On differentiability properties of the symbol of a~multidimensional singular integral operator},
     journal = {Sbornik. Mathematics},
     pages = {427--450},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_4_a0/}
}
                      
                      
                    A. D. Gadzhiev. On differentiability properties of the symbol of a~multidimensional singular integral operator. Sbornik. Mathematics, Tome 42 (1982) no. 4, pp. 427-450. http://geodesic.mathdoc.fr/item/SM_1982_42_4_a0/
