3-characterization of the O'Nan--Sims group
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 42 (1982) no. 3, pp. 419-425
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following theorem is proved.
Theorem. Let $G$ be a finite simple group containing an elementary abelian subgroup $E$ of order $9$ with  $C_G(E)=E\times F,$ where $F\simeq L_2 (9)$ and
$C_G(e)=C_G(E)$ for all $e\in E^\sharp$. Then $G$ is isomorphic to the O'Nan–Sims simple group. Bibliography: 10 titles.
			
            
            
            
          
        
      @article{SM_1982_42_3_a8,
     author = {S. A. Syskin},
     title = {3-characterization of the {O'Nan--Sims} group},
     journal = {Sbornik. Mathematics},
     pages = {419--425},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_3_a8/}
}
                      
                      
                    S. A. Syskin. 3-characterization of the O'Nan--Sims group. Sbornik. Mathematics, Tome 42 (1982) no. 3, pp. 419-425. http://geodesic.mathdoc.fr/item/SM_1982_42_3_a8/
