3-characterization of the O'Nan–Sims group
Sbornik. Mathematics, Tome 42 (1982) no. 3, pp. 419-425 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following theorem is proved. Theorem. Let $G$ be a finite simple group containing an elementary abelian subgroup $E$ of order $9$ with $C_G(E)=E\times F,$ where $F\simeq L_2 (9)$ and $C_G(e)=C_G(E)$ for all $e\in E^\sharp$. Then $G$ is isomorphic to the O'Nan–Sims simple group. Bibliography: 10 titles.
@article{SM_1982_42_3_a8,
     author = {S. A. Syskin},
     title = {3-characterization of the {O'Nan{\textendash}Sims} group},
     journal = {Sbornik. Mathematics},
     pages = {419--425},
     year = {1982},
     volume = {42},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_3_a8/}
}
TY  - JOUR
AU  - S. A. Syskin
TI  - 3-characterization of the O'Nan–Sims group
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 419
EP  - 425
VL  - 42
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1982_42_3_a8/
LA  - en
ID  - SM_1982_42_3_a8
ER  - 
%0 Journal Article
%A S. A. Syskin
%T 3-characterization of the O'Nan–Sims group
%J Sbornik. Mathematics
%D 1982
%P 419-425
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1982_42_3_a8/
%G en
%F SM_1982_42_3_a8
S. A. Syskin. 3-characterization of the O'Nan–Sims group. Sbornik. Mathematics, Tome 42 (1982) no. 3, pp. 419-425. http://geodesic.mathdoc.fr/item/SM_1982_42_3_a8/

[1] Ilinykh L. P., “Kharakterizatsiya prostoi gruppy O'Nena–Simsa tsentralizatorom elementa poryadka 3”, Matem. zametki, 24:4 (1978), 487–497 | MR

[2] Maier V. R., “O konechnykh prostykh gruppakh 3-ranga $\geqslant 2$”, XV Vses. alg. konf., Tezisy dokladov, 1, 1979, 96

[3] Syskin S. A., “O deistvii gruppy $L_2(q)$ na 2-gruppe”, Algebra i logika, 18:2 (1978), 224–231 | MR

[4] Syskin S. A., “Konechnye gruppy s primarnymi tsentralizatorami chetvernykh podgrupp”, Izv. AN SSSR, ser. matem., 42 (1978), 1132–1150 | MR | Zbl

[5] Bauman B., “Endliche Gruppen mit einer 2-zentralen Involution deren Zentralizator 2-abgeschlossen ist”, Illinois J. Math., 22:2 (1978), 240–261 | MR | Zbl

[6] Gilman R., Gorenstein D., “Finite groups with Sylow 2-subgroups of class two. I, II”, Trans. Amer. Math. Soc., 207 (1975), 1–101, 103–126 | DOI | MR | Zbl

[7] Gorenstein D., Finite Groups, Harper Row, New York, 1968 | MR | Zbl

[8] Gorenstein D., Harada K., “Finite groups whose 2-subgroups are generated by at most 4 elements”, Memoirs Amer. Math. Soc., 1974, no. 147, 1–464 | MR

[9] O'Nan M. E., “Some evidence for the existence of a new simple group”, Proc. London Math. Soc., 32:3 (1976), 421–479 | DOI | MR

[10] Schifelbusch L., “On the transfer homomorphism”, Commun. Algebra, 3:4 (1975), 295–317 | DOI | MR