3-characterization of the O'Nan--Sims group
Sbornik. Mathematics, Tome 42 (1982) no. 3, pp. 419-425

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved. Theorem. Let $G$ be a finite simple group containing an elementary abelian subgroup $E$ of order $9$ with $C_G(E)=E\times F,$ where $F\simeq L_2 (9)$ and $C_G(e)=C_G(E)$ for all $e\in E^\sharp$. Then $G$ is isomorphic to the O'Nan–Sims simple group. Bibliography: 10 titles.
@article{SM_1982_42_3_a8,
     author = {S. A. Syskin},
     title = {3-characterization of the {O'Nan--Sims} group},
     journal = {Sbornik. Mathematics},
     pages = {419--425},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_3_a8/}
}
TY  - JOUR
AU  - S. A. Syskin
TI  - 3-characterization of the O'Nan--Sims group
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 419
EP  - 425
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_42_3_a8/
LA  - en
ID  - SM_1982_42_3_a8
ER  - 
%0 Journal Article
%A S. A. Syskin
%T 3-characterization of the O'Nan--Sims group
%J Sbornik. Mathematics
%D 1982
%P 419-425
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_42_3_a8/
%G en
%F SM_1982_42_3_a8
S. A. Syskin. 3-characterization of the O'Nan--Sims group. Sbornik. Mathematics, Tome 42 (1982) no. 3, pp. 419-425. http://geodesic.mathdoc.fr/item/SM_1982_42_3_a8/