On the motion of a multidimensional body with fixed point in a gravitational field
Sbornik. Mathematics, Tome 42 (1982) no. 3, pp. 413-418 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the motion of an $n$-dimensional solid body with a fixed point in a gravitational field is considered. More precisely, the integrable case of such motion determined by certain symmetry conditions of the body is considered. These conditions are obtained as a generalization of the conditions for the Lagrange case of the motion of a three-dimensional heavy gyroscope. For the $n$-dimensional Lagrange case the collection of first integrals presented in the paper is sufficient for complete integrability. The fact that the case considered provides an example of a completely integrable Hamiltonian system with a noncommutative algebra of first integrals is of interest. Bibliography: 7 titles.
@article{SM_1982_42_3_a7,
     author = {A. V. Belyaev},
     title = {On the motion of a~multidimensional body with fixed point in a~gravitational field},
     journal = {Sbornik. Mathematics},
     pages = {413--418},
     year = {1982},
     volume = {42},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_3_a7/}
}
TY  - JOUR
AU  - A. V. Belyaev
TI  - On the motion of a multidimensional body with fixed point in a gravitational field
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 413
EP  - 418
VL  - 42
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1982_42_3_a7/
LA  - en
ID  - SM_1982_42_3_a7
ER  - 
%0 Journal Article
%A A. V. Belyaev
%T On the motion of a multidimensional body with fixed point in a gravitational field
%J Sbornik. Mathematics
%D 1982
%P 413-418
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1982_42_3_a7/
%G en
%F SM_1982_42_3_a7
A. V. Belyaev. On the motion of a multidimensional body with fixed point in a gravitational field. Sbornik. Mathematics, Tome 42 (1982) no. 3, pp. 413-418. http://geodesic.mathdoc.fr/item/SM_1982_42_3_a7/

[1] Marsden J., Weinstein A., “Reduction of symplectic manifolds with symmetry”, Reports Math. Phys., 5:1 (1974), 121–130 | DOI | MR | Zbl

[2] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[3] Vinogradov A. M., Krasilschik I. S., “Chto takoe gamiltonov formalizm”, Uspekhi matem. nauk, XXX:1(181) (1975), 173–198

[4] Vinogradov A. M., Kupershmidt B. A., “Struktura gamiltonovoi mekhaniki”, Uspekhi matem. nauk, XXXII:4(196) (1977), 175–236 | MR

[5] Bocharov A. V., “Dopolnenie k state: Struktura gamiltonovoi mekhaniki”, Uspekhi matem. nauk, XXXII:4(196) (1977), 237–240

[6] Mischenko A. S., Fomenko A. T., “Obobschennyi metod Luivillya integrirovaniya gamiltonovykh sistem”, Funkts. analiz, XII:2 (1977), 46–56

[7] Rais Mustapha, “L'indice des produits semi-directs $E \underset{\rho}{\times} g$”, serie A, C. r. Acad. Sci., 287:4 (1978), 195–197 | MR | Zbl