Equiconvergence theorems for integrodifferential and integral operators
Sbornik. Mathematics, Tome 42 (1982) no. 3, pp. 331-355

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known results of Steklov, Tamarkin, and Stone on the equiconvergence of Fourier expansions in eigenfunctions and associated functions of differential operators and in a trigonometrical system for arbitrary functions from $L[0,1]$ are carried over to integral operators $Af=\int^1_0A(x, t)f(t)\,dt$ and to integrodifferential operators of the form $$ y^{(n)}+\alpha y+\int^1_0N(x, t)[y^{(n)}(t)+\alpha y(t)]\,dt, \qquad U_j(y)=\int^1_0y(t)\varphi_j(t)\,dt\quad(j=1,\dots,n), $$ where $\alpha$ is a complex number and $U_j(y)$ are linear forms in $y^{(s)}(0)$ and $y^{(s)}(1)$ $(s=0,1,\dots,n-1)$. Bibliography: 23 titles.
@article{SM_1982_42_3_a2,
     author = {A. P. Khromov},
     title = {Equiconvergence theorems for integrodifferential and integral operators},
     journal = {Sbornik. Mathematics},
     pages = {331--355},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_3_a2/}
}
TY  - JOUR
AU  - A. P. Khromov
TI  - Equiconvergence theorems for integrodifferential and integral operators
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 331
EP  - 355
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_42_3_a2/
LA  - en
ID  - SM_1982_42_3_a2
ER  - 
%0 Journal Article
%A A. P. Khromov
%T Equiconvergence theorems for integrodifferential and integral operators
%J Sbornik. Mathematics
%D 1982
%P 331-355
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_42_3_a2/
%G en
%F SM_1982_42_3_a2
A. P. Khromov. Equiconvergence theorems for integrodifferential and integral operators. Sbornik. Mathematics, Tome 42 (1982) no. 3, pp. 331-355. http://geodesic.mathdoc.fr/item/SM_1982_42_3_a2/