Equiconvergence theorems for integrodifferential and integral operators
Sbornik. Mathematics, Tome 42 (1982) no. 3, pp. 331-355 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The well-known results of Steklov, Tamarkin, and Stone on the equiconvergence of Fourier expansions in eigenfunctions and associated functions of differential operators and in a trigonometrical system for arbitrary functions from $L[0,1]$ are carried over to integral operators $Af=\int^1_0A(x, t)f(t)\,dt$ and to integrodifferential operators of the form $$ y^{(n)}+\alpha y+\int^1_0N(x, t)[y^{(n)}(t)+\alpha y(t)]\,dt, \qquad U_j(y)=\int^1_0y(t)\varphi_j(t)\,dt\quad(j=1,\dots,n), $$ where $\alpha$ is a complex number and $U_j(y)$ are linear forms in $y^{(s)}(0)$ and $y^{(s)}(1)$ $(s=0,1,\dots,n-1)$. Bibliography: 23 titles.
@article{SM_1982_42_3_a2,
     author = {A. P. Khromov},
     title = {Equiconvergence theorems for integrodifferential and integral operators},
     journal = {Sbornik. Mathematics},
     pages = {331--355},
     year = {1982},
     volume = {42},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_3_a2/}
}
TY  - JOUR
AU  - A. P. Khromov
TI  - Equiconvergence theorems for integrodifferential and integral operators
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 331
EP  - 355
VL  - 42
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1982_42_3_a2/
LA  - en
ID  - SM_1982_42_3_a2
ER  - 
%0 Journal Article
%A A. P. Khromov
%T Equiconvergence theorems for integrodifferential and integral operators
%J Sbornik. Mathematics
%D 1982
%P 331-355
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1982_42_3_a2/
%G en
%F SM_1982_42_3_a2
A. P. Khromov. Equiconvergence theorems for integrodifferential and integral operators. Sbornik. Mathematics, Tome 42 (1982) no. 3, pp. 331-355. http://geodesic.mathdoc.fr/item/SM_1982_42_3_a2/

[1] Birkhoff G. D., “On the asymptotic character of the solutions of certain linear differential equations containig a parameter”, Trans. Amer. Math. Soc., 9:2 (1908), 219–231 | DOI | MR

[2] Birkhoff G. D., “Boundary value and expansion problems of ordinary linear differential equations”, Trans. Amer. Math. Soc., 9:4 (108), 373–397 | DOI | MR

[3] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[4] Tamarkin I. D., “Sur quelques points de la theorie des equations differentielles lineaires ordinaires et sur la generalisation de la serie de Fourier”, Rend. Circ. Mat. Palermo, 34 (1912), 345–382 | DOI | Zbl

[5] Tamarkin Ya. D., O nekotorykh obschikh zadachakh teorii obyknovennykh lineinykh differentsialnykh uravnenii, Petrograd, 1917 | Zbl

[6] Stone M. H., “A comparison of the series of Fourier and Birkhoff”, Trans. Amer. Math. Soc., 28:4 (1926), 695–761 | DOI | MR

[7] Steklov V. A., “Sur les expressions asymptotiques de certaines functions definies par des equations differentielles lineaires du deuxieme ordre, et leur applications an probleme du developpement d'une function arbitraire en series procedant suivant les dites functions”, Soobsch. matem. ob-va (2), 10, no. 2-6, Kharkov, 1907–1909, 97–199

[8] Shilovskaya O. K., “Razlozhenie po sobstvennym funktsiyam lineinykh differentsialnykh operatorov”, Differentsialnye i integralnye uravneniya, izd-vo Sarat. un-ta, Saratov, 1972, 53–79

[9] Ilin V. A., “O ravnoskhodimosti razlozhenii v trigonometricheskii ryad Fure i po sobstvennym funktsiyam puchka Keldysha obyknovennykh nesamosopryazhennykh differentsialnykh operatorov”, DAN SSSR, 225:3 (1975), 497–499 | MR

[10] Ilin V. A., “O ravnomernoi ravnoskhodimosti razlozhenii po sobstvennym i prisoedinennym funktsiyam nesamosopryazhennogo obyknovennogo differentsialnogo operatora i v trigonometricheskii ryad Fure”, DAN SSSR, 223:3 (1975), 548–551 | MR

[11] Ilin V. A., “Neobkhodimye i dostatochnye usloviya bazisnosti podsistemy sobstvennykh uravnenii”, DAN SSSR, 227:4 (1976), 796–799 | MR

[12] Ilin V. A., “O priblizhenii funktsii biortogonalnym ryadom po sobstvennym i prisoedinennym funktsiyam differentsialnykh operatorov”, Teoriya priblizheniya funktsii, 1977, 206–213

[13] Kuptsov N. P., “Teoriya ravnoskhodimosti dlya razlozhenii Fure v prostranstvakh Banakha”, Matem. zametki, 1:4 (1967), 469–474 | Zbl

[14] Kurdyumov V. L., “Integralnye operatory s razryvnym yadrom”, Issledovaniya po differentsialnym uravneniyam i teorii funktsii, 4, izd-vo Sarat. un-ta, Saratov, 1974, 104–110

[15] Kurdyumov V. L., “O bazisnosti po Rissu kornevykh vektorov integralnogo operatora s yadrom tipa funktsii Grina”, Differentsialnye uravneniya i vychislitelnaya matematika, vyp. 6, ch. II, 1976, 25–43 | Zbl

[16] Nazarov L. G., Razlozhenie po sobstvennym funktsiyam odnogo klassa integralnykh operatorov, Dep. No 1239-76, 1976

[17] Paltsev B. V., “Asimptoticheskoe povedenie sobstvennykh znachenii operatorov svertki na konechnom intervale s yadrami, preobrazovaniya Fure kotorykh ratsionalny”, DAN SSSR, 194:4 (1970), 774–777

[18] Paltsev B. V., “Razlozhenie po sobstvennym funktsiyam integralnykh operatorov svertki na konechnom intervale s yadrami, preobrazovaniya Fure kotorykh ratsionalny”, Izv. AN SSSR, ser. matem., 36 (1972), 591–634

[19] Minkin A. M., “Regulyarnost samosopryazhennykh kraevykh uslovii”, Matem. zametki, 22:6 (1977), 835–846 | MR | Zbl

[20] Minkin A. M., “Teorema ravnoskhodnosti dlya normalnogo integralnogo operatora s yadrom tipa funktsii Grina”, Vychislitelnye metody i programmirovanie, vyp. 1, 1977, 181–190 | MR | Zbl

[21] Salaff S., “Regular boundary conditions for ordinary differential operators”, Trans. Amer. Math. Soc., 134:2 (1968), 355–373 | DOI | MR | Zbl

[22] Khromov A. P., Razlozhenie po sobstvennym funktsiyam obyknovennykh lineinykh differentsialnykh operatorov na konechnom intervale, Avtoref. dis. na soiskanie uch. st. kand. fiz.-matem. nauk, M., 1962

[23] Khromov A. P., Integralnye operatory s yadrami tipa funktsii Grina, Dep. No 4841-72, 1972