Subgroups in finite quasithln groups
Sbornik. Mathematics, Tome 42 (1982) no. 3, pp. 311-330 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A finite group $G$ is called quasithin if $m_p(M)\leqslant2$ for any 2-local subgroup $M$ in $G$ and any odd prime $p$. As usual, $m_p(X)$ denotes the $p$-rank of the group $X$. Let $\mathscr K$ denote the set of all known (at the present time) finite non-Abelian simple groups. A group $G$ is called a $\mathscr K$-group if each of its proper non-Abelian simple sections belongs to $\mathscr K$. The current state of the classification of finite simple groups points to the importance of studying simple quasithin $\mathscr K$-groups $G$. The structure of proper subgroups in such groups are investigated in this paper. Moreover, a detailed study is made of the structure of 2-local subgroups in quasithin $\mathscr K$-groups whose 2-local 3-rank does not exceed 1. As an example of how the results can be applied, we examine the component case of a problem concerning quasithin groups of 2-local 3-rank at most 1. Bibliography: 16 titles.
@article{SM_1982_42_3_a1,
     author = {V. I. Loginov},
     title = {Subgroups in finite quasithln groups},
     journal = {Sbornik. Mathematics},
     pages = {311--330},
     year = {1982},
     volume = {42},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_3_a1/}
}
TY  - JOUR
AU  - V. I. Loginov
TI  - Subgroups in finite quasithln groups
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 311
EP  - 330
VL  - 42
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1982_42_3_a1/
LA  - en
ID  - SM_1982_42_3_a1
ER  - 
%0 Journal Article
%A V. I. Loginov
%T Subgroups in finite quasithln groups
%J Sbornik. Mathematics
%D 1982
%P 311-330
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1982_42_3_a1/
%G en
%F SM_1982_42_3_a1
V. I. Loginov. Subgroups in finite quasithln groups. Sbornik. Mathematics, Tome 42 (1982) no. 3, pp. 311-330. http://geodesic.mathdoc.fr/item/SM_1982_42_3_a1/

[1] Aschbacher M., “Thin finite simple groups”, J. Algebra, 54:1 (1978), 50–152 | DOI | MR | Zbl

[2] Gorenstein D., Finite groups, Harper and Row, New York, 1968 | MR | Zbl

[3] Gorenstein D., “The classification of finite simple groups: I. Simple groups and local analysis”, Bull. (New Series) Amer. Math. Soc., 1:1 (1979), 43–199 | DOI | MR | Zbl

[4] Dickson L., Linear groups, Dover, New York, 1958 | MR | Zbl

[5] Wielandt H., “Sylowgruppen und Kompositions-Struktur”, B. 22, Abh. Sem. Hamburg, 1958, 215–228 | DOI | MR | Zbl

[6] Aschbacher M., “A characterization of Chevalley groups over fields of odd order”, Ann. Math., 106:2 (1977), 353–468 | DOI | MR | Zbl

[7] Gorenstein D., Walter J. H., “Balance and generation in finite groups”, J. Algebra, 33:2 (1975), 224–287 | DOI | MR | Zbl

[8] Blackburn N., “On a special class of $p$-groups”, Acta Math., 100:1–2 (1958), 45–92 | DOI | MR | Zbl

[9] Blackburn N., “Generalizations of certain elementary theorems on $p$-groups”, Proc. London Math. Soc. (3), 11:41 (1961), 1–22 | DOI | MR | Zbl

[10] Smith F., “Finite simple groups all of whose 2-local subgroups are solvable”, J. Algebra, 34:3 (1975), 481–520 | DOI | MR | Zbl

[11] Aschbacher M., “On finite groups of component type”, Ill. J. Math., 19:1 (1975), 87–115 | MR | Zbl

[12] Foote R., “Finite groups with components of 2-rank 1. I, II”, J. Algebra, 41:1 (1976), 16–46 | DOI | MR | Zbl

[13] Aschbacher M., Seitz G. M., “On groups with a standard component of known type”, Osaka J. Math., 13:3 (1976), 439–482 | MR | Zbl

[14] Finkelstein L., “Finite groups with a standard component of type Janko-Ree”, J. Algebra, 36:3 (1975), 416–426 | DOI | MR | Zbl

[15] Griess Jr. R. L., Mason D. R., Seitz G. M., “Bender groups as standard subgroups”, Trans. Amer. Math. Soc., 238 (1978), 179–211 | DOI | MR | Zbl

[16] Seitz G. M., “Standard subgroups of type $L_n(2a)$”, J. Algebra, 48:2 (1977), 417–438 | DOI | MR | Zbl