Surfaces of nonpositive extrinsic curvature in spaces of constant curvature
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 42 (1982) no. 3, pp. 297-310
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper investigates surfaces of nonpositive extrinsic curvature in a pseudo-Riemannian space $S^{l+p}_{l,p}$ of curvature 1, Kählerian submanifolds of complex projective space $P^n$, and saddle surfaces in spherical space $S^3$. It is determined under what conditions a surface is a totally geodesic submanifold.
Bibliography: 14 titles.
			
            
            
            
          
        
      @article{SM_1982_42_3_a0,
     author = {A. A. Borisenko},
     title = {Surfaces of nonpositive extrinsic curvature in spaces of constant curvature},
     journal = {Sbornik. Mathematics},
     pages = {297--310},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_3_a0/}
}
                      
                      
                    A. A. Borisenko. Surfaces of nonpositive extrinsic curvature in spaces of constant curvature. Sbornik. Mathematics, Tome 42 (1982) no. 3, pp. 297-310. http://geodesic.mathdoc.fr/item/SM_1982_42_3_a0/
