Surfaces of nonpositive extrinsic curvature in spaces of constant curvature
Sbornik. Mathematics, Tome 42 (1982) no. 3, pp. 297-310

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates surfaces of nonpositive extrinsic curvature in a pseudo-Riemannian space $S^{l+p}_{l,p}$ of curvature 1, Kählerian submanifolds of complex projective space $P^n$, and saddle surfaces in spherical space $S^3$. It is determined under what conditions a surface is a totally geodesic submanifold. Bibliography: 14 titles.
@article{SM_1982_42_3_a0,
     author = {A. A. Borisenko},
     title = {Surfaces of nonpositive extrinsic curvature in spaces of constant curvature},
     journal = {Sbornik. Mathematics},
     pages = {297--310},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_3_a0/}
}
TY  - JOUR
AU  - A. A. Borisenko
TI  - Surfaces of nonpositive extrinsic curvature in spaces of constant curvature
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 297
EP  - 310
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_42_3_a0/
LA  - en
ID  - SM_1982_42_3_a0
ER  - 
%0 Journal Article
%A A. A. Borisenko
%T Surfaces of nonpositive extrinsic curvature in spaces of constant curvature
%J Sbornik. Mathematics
%D 1982
%P 297-310
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_42_3_a0/
%G en
%F SM_1982_42_3_a0
A. A. Borisenko. Surfaces of nonpositive extrinsic curvature in spaces of constant curvature. Sbornik. Mathematics, Tome 42 (1982) no. 3, pp. 297-310. http://geodesic.mathdoc.fr/item/SM_1982_42_3_a0/