Algebraic theory of multi-valued formal groups
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 42 (1982) no. 2, pp. 265-285
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper deals with the algebraic theory of multi-valued formal groups. The letters FG will be used to mean an $n$-valued formal group. 
It is shown that to any FG there corresponds a coalgebra of a certain form. The form of the generator of an FG is obtained, and differential equations involving the coefficients of the generator are derived. It is shown that an FG can be uniquely reproduced by its generator. The generator of a cyclic elementary group is computed. A classification is obtained for the three-valued, four-valued, and five-valued FG's. It is proved that there exist finitely many elementary FG's with order not greater than 11.
Bibliography: 4 titles.
			
            
            
            
          
        
      @article{SM_1982_42_2_a3,
     author = {A. N. Kholodov},
     title = {Algebraic theory of multi-valued formal groups},
     journal = {Sbornik. Mathematics},
     pages = {265--285},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_2_a3/}
}
                      
                      
                    A. N. Kholodov. Algebraic theory of multi-valued formal groups. Sbornik. Mathematics, Tome 42 (1982) no. 2, pp. 265-285. http://geodesic.mathdoc.fr/item/SM_1982_42_2_a3/
