Estimates of the growth of orthogonal polynomials whose weight is bounded away from zero
Sbornik. Mathematics, Tome 42 (1982) no. 2, pp. 237-263

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any $\varepsilon>0$ and any point $x_0$ in the interval $(-1,1)$ there exists a weight function $\rho(x)$ on $[-1,1]$ with $\rho(x)\geqslant1$, $x\in[-1,1]$, such that the following inequalities hold for the corresponding orthonormal polynomials $p_n(x)$: $$ |p_n(x_0)|\geqslant n^{1/2-\varepsilon},\qquad n\in\Lambda, $$ where $\Lambda$ is some infinite sequence of positive integers. Bibliography: 7 titles.
@article{SM_1982_42_2_a2,
     author = {E. A. Rakhmanov},
     title = {Estimates of the growth of orthogonal polynomials whose weight is bounded away from zero},
     journal = {Sbornik. Mathematics},
     pages = {237--263},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_2_a2/}
}
TY  - JOUR
AU  - E. A. Rakhmanov
TI  - Estimates of the growth of orthogonal polynomials whose weight is bounded away from zero
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 237
EP  - 263
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_42_2_a2/
LA  - en
ID  - SM_1982_42_2_a2
ER  - 
%0 Journal Article
%A E. A. Rakhmanov
%T Estimates of the growth of orthogonal polynomials whose weight is bounded away from zero
%J Sbornik. Mathematics
%D 1982
%P 237-263
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_42_2_a2/
%G en
%F SM_1982_42_2_a2
E. A. Rakhmanov. Estimates of the growth of orthogonal polynomials whose weight is bounded away from zero. Sbornik. Mathematics, Tome 42 (1982) no. 2, pp. 237-263. http://geodesic.mathdoc.fr/item/SM_1982_42_2_a2/