Estimates of the growth of orthogonal polynomials whose weight is bounded away from zero
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 42 (1982) no. 2, pp. 237-263
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that for any $\varepsilon>0$ and any point $x_0$ in the interval $(-1,1)$ there exists a weight function $\rho(x)$ on $[-1,1]$ with $\rho(x)\geqslant1$, $x\in[-1,1]$, such that the following inequalities hold for the corresponding orthonormal polynomials $p_n(x)$:
$$
|p_n(x_0)|\geqslant n^{1/2-\varepsilon},\qquad n\in\Lambda,
$$
where $\Lambda$  is some infinite sequence of positive integers.
Bibliography: 7 titles.
			
            
            
            
          
        
      @article{SM_1982_42_2_a2,
     author = {E. A. Rakhmanov},
     title = {Estimates of the growth of orthogonal polynomials whose weight is bounded away from zero},
     journal = {Sbornik. Mathematics},
     pages = {237--263},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_2_a2/}
}
                      
                      
                    E. A. Rakhmanov. Estimates of the growth of orthogonal polynomials whose weight is bounded away from zero. Sbornik. Mathematics, Tome 42 (1982) no. 2, pp. 237-263. http://geodesic.mathdoc.fr/item/SM_1982_42_2_a2/
