On the theory of solvability of a problem with oblique derivative
Sbornik. Mathematics, Tome 42 (1982) no. 2, pp. 197-235 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A boundary-value problem with oblique derivative is studied for an elliptic differential operator $\mathscr L=a_{ij}\mathscr D_i\mathscr D_j+a_j\mathscr D_j+a_0$ in a bounded domain $\Omega\in\mathbf R^{n+2}$ with a smooth boundary $M$. It is assumed that the set $\mu$ of those points of $M$ at which the problem's vector field $\mathbf l$ is intersected by the tangent space $T(M)$ is not empty. This is equivalent to the nonellipticity of the boundary-value problem \begin{equation} \mathscr Lu=F \quad\text{in}\quad\Omega,\qquad \frac{\partial u}{\partial\mathbf l}+bu=f\quad\text{on}\quad M, \end{equation} which can have an infinite-dimensional kernel and cokernel, depending upon the organization of $\mu$ and the behavior of field $\mathbf l$ in a neighborhood of $\mu$. On the set $\mu$, which is permitted to contain a subset of (complete) dimension $n+1$, there are picked out submanifolds $\mu_1$ and $\mu_2$ of codimension 1, transversal to $\mathbf l$, and the problem \begin{equation} \mathscr Lu=F \quad\text{in}\quad\Omega,\qquad \frac{\partial u}{\partial\mathbf l}+bu=f\quad\text{on}\quad M\setminus\mu_2, \qquad u=g\quad\text{on}\quad\mu_1 \end{equation} is analyzed instead of (1). It is proved that in suitable spaces the operator corresponding to problem (2) is a Fredholm operator and under natural constraints on coefficient $b$ the problem is uniquely solvable in the class of functions $u$ smooth in $[\Omega]\setminus\mu_2$, with a finite jump in $u|_M$. A necessary and sufficient condition is derived for the compactness of the inverse operator of problem (2) in terms of the set $\mu$ and the field $\mathbf l$. Bibliography: 14 titles.
@article{SM_1982_42_2_a1,
     author = {B. P. Paneah},
     title = {On the theory of solvability of a~problem with oblique derivative},
     journal = {Sbornik. Mathematics},
     pages = {197--235},
     year = {1982},
     volume = {42},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_42_2_a1/}
}
TY  - JOUR
AU  - B. P. Paneah
TI  - On the theory of solvability of a problem with oblique derivative
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 197
EP  - 235
VL  - 42
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1982_42_2_a1/
LA  - en
ID  - SM_1982_42_2_a1
ER  - 
%0 Journal Article
%A B. P. Paneah
%T On the theory of solvability of a problem with oblique derivative
%J Sbornik. Mathematics
%D 1982
%P 197-235
%V 42
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1982_42_2_a1/
%G en
%F SM_1982_42_2_a1
B. P. Paneah. On the theory of solvability of a problem with oblique derivative. Sbornik. Mathematics, Tome 42 (1982) no. 2, pp. 197-235. http://geodesic.mathdoc.fr/item/SM_1982_42_2_a1/

[1] Paneyakh B. P., “O zadache s kosoi proizvodnoi”, DAN SSSR, 243:6 (1978), 1394–1397 | MR | Zbl

[2] Mazya V. G., Paneyakh B. P., “Vyrozhdayuschiesya ellipticheskie psevdodifferentsialnye operatory i zadachi s kosoi proizvodnoi”, Trudy Mosk. matem. ob-va, 31 (1974), 237–295

[3] Mazya V. G., Paneyakh B. P., “Koertsitivnye otsenki i regulyarnost reshenii vyrozhdayuschikhsya ellipticheskikh psevdodifferentsialnykh uravnenii”, Funkts. analiz, 4:4 (1970), 41–56 | MR

[4] Borelli R., “The singular second-order oblique derivative problem”, J. Math. and Mech., 16 (1966), 61–82 | MR

[5] Khërmander L., “Psevdodifferentsialnye operatory i neellipticheskie kraevye zadachi”, Psevdodifferentsialnye operatory, Mir, M., 1967, 166–296 | MR

[6] Egorov Yu. V., Kondratev V. A., “O zadache s kosoi proizvodnoi”, Matem. sb., 78(120) (1960), 148–176

[7] Malyutov M. V., “O kraevoi zadache Puankare”, Trudy Mosk. matem. ob-va, 20 (1969), 173–204 | Zbl

[8] Mazya V. G., “O vyrozhdayuscheisya zadache s kosoi proizvodnoi”, Matem. sb., 87(129) (1972), 417–454

[9] Winzell B., “The oblique derivative problem. I”, Math. Ann., 229 (1977), 267–278 | DOI | MR | Zbl

[10] Winzell B., “The oblique derivative problem. II”, Ark. Mat., 17:1 (1979), 107–122 | DOI | MR | Zbl

[11] Eskin G. I., “Vyrozhdayuschiesya ellipticheskie psevdodifferentsialnye operatory glavnogo tipa”, Matem. sb., 82(124) (1970), 585–628 | MR

[12] Lefshets S., Geometricheskaya teoriya differentsialnykh uravnenii, IL, M., 1961

[13] Melin A., “Lower bounds for pseudo differential operators”, Ark. Mat., 9:1 (1971), 117–143 | DOI | MR

[14] Kon Dzh., Nirenberg L., “Algebry psevdodifferentsialnykh operatorov”, Psevdodifferentsialnye operatory, Mir, M., 1967, 9–62 | MR