Homotopy self-equivalences of highly connected manifolds
Sbornik. Mathematics, Tome 41 (1982) no. 4, pp. 481-494

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the sequence of Kahn is proved to decompose by almost diffeomorphisms, if the dimension of the manifold is not divisible by 8. The structure of the group of homotopy self-equivalences of $S^n\times S^n$ is calculated. Application of the bijection of Sullivan yields additional information. Bibliography: 13 titles.
@article{SM_1982_41_4_a3,
     author = {V. E. Kolosov},
     title = {Homotopy self-equivalences of highly connected manifolds},
     journal = {Sbornik. Mathematics},
     pages = {481--494},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_4_a3/}
}
TY  - JOUR
AU  - V. E. Kolosov
TI  - Homotopy self-equivalences of highly connected manifolds
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 481
EP  - 494
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_41_4_a3/
LA  - en
ID  - SM_1982_41_4_a3
ER  - 
%0 Journal Article
%A V. E. Kolosov
%T Homotopy self-equivalences of highly connected manifolds
%J Sbornik. Mathematics
%D 1982
%P 481-494
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_41_4_a3/
%G en
%F SM_1982_41_4_a3
V. E. Kolosov. Homotopy self-equivalences of highly connected manifolds. Sbornik. Mathematics, Tome 41 (1982) no. 4, pp. 481-494. http://geodesic.mathdoc.fr/item/SM_1982_41_4_a3/