@article{SM_1982_41_4_a3,
author = {V. E. Kolosov},
title = {Homotopy self-equivalences of highly connected manifolds},
journal = {Sbornik. Mathematics},
pages = {481--494},
year = {1982},
volume = {41},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1982_41_4_a3/}
}
V. E. Kolosov. Homotopy self-equivalences of highly connected manifolds. Sbornik. Mathematics, Tome 41 (1982) no. 4, pp. 481-494. http://geodesic.mathdoc.fr/item/SM_1982_41_4_a3/
[1] S. Smale, “On the structure of manifolds”, Amer. J. Math., 84 (1962), 387–399 | DOI | MR | Zbl
[2] J. Milnor, “A procedure for killing the homotopy groups of manifolds”, Simposia in Pure Math., 3, Amer. Math. Soc., 1961, 39–55 | MR
[3] C. T. C. Wall, “Classification of ($n-1$)-connected $2n$-manifolds”, Ann. Math., 75 (1962), 163–189 | DOI | MR | Zbl
[4] M. Kervaire, J. Milnor, “Groups of homotopy spheres”, Ann. Math., 77 (1963), 504–537 | DOI | MR | Zbl
[5] W. Browder, Surgery on the simply connected manifolds, Springer-Verlag, 1972 | MR
[6] P. Mosher, M. Tangora, Kogomologicheskie operatsii i ikh prilozheniya v teorii gomotopii, izd-vo “Mir”, Moskva, 1970 | MR
[7] P. J. Kahn, “Self-equivalences of ($n-1$)-connected $2n$-manifolds”, Math. Ann., 180 (1969), 26–47 | DOI | MR | Zbl
[8] S. Smale, “On the structure of $5$-manifolds”, Ann. Math., 75 (1962), 38–46 | DOI | MR | Zbl
[9] R. S. Palais, “Local triviality of the restriction map for embeddings”, Comm. Math. Helv., 34 (1960), 305–312 | DOI | MR | Zbl
[10] A. Haefliger, “Differentiable embeddings of $S^n$ in $S^{n+q}$ for $q>2$”, Ann. Math., 83 (1966), 402–436 | DOI | MR | Zbl
[11] Rurk, Sanderson, Vvedenie v kusochno lineinuyu topologiyu, izd-vo “Mir”, Moskva
[12] R. Penrous, J. Whitehead, E. Zeeman, “Imbeddings of manifolds”, Ann. Math., 73 (1961), 613–623 | DOI | MR
[13] P. J. Hilton, “On the homotopy groups of the union of spheres”, J. London Math. Soc., 30 (1955), 154–172 | DOI | MR | Zbl