Asymptotics of Hadamard determinants and the convergence of rows of Padé approximants for sums of exponentials
Sbornik. Mathematics, Tome 41 (1982) no. 4, pp. 427-441 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotics of Hadamard determinants $\Delta_{n,m}$ (of dimension $m\times m$) for arbitrary fixed $m$ and $n\to\infty$ for the function $f(z)=\sum^k_{t=1}e^{\lambda_tz}$ are studied, where $\{\lambda_t\}^k_{t=1}$ are distinct complex numbers with unit modulus. A theorem on the convergence of the $(s\cdot p)$th row of the Padé table for the function $f(z)=\sum^k_{t=1}e^{\lambda_tz}$ ($\{\lambda_t\}^k_{t=1}$ are arbitrary distinct complex numbers) in the topology of $H(\mathbf C)$ holds for arbitrary natural numbers $p$ and $s$ equal to the number of $\lambda_t$ with modulus that is maximal among the $\{\lambda_t\}^k_{t=1}$. Bibliography: 8 titles.
@article{SM_1982_41_4_a1,
     author = {A. I. Aptekarev},
     title = {Asymptotics of {Hadamard} determinants and the convergence of rows of {Pad\'e} approximants for sums of exponentials},
     journal = {Sbornik. Mathematics},
     pages = {427--441},
     year = {1982},
     volume = {41},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_4_a1/}
}
TY  - JOUR
AU  - A. I. Aptekarev
TI  - Asymptotics of Hadamard determinants and the convergence of rows of Padé approximants for sums of exponentials
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 427
EP  - 441
VL  - 41
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1982_41_4_a1/
LA  - en
ID  - SM_1982_41_4_a1
ER  - 
%0 Journal Article
%A A. I. Aptekarev
%T Asymptotics of Hadamard determinants and the convergence of rows of Padé approximants for sums of exponentials
%J Sbornik. Mathematics
%D 1982
%P 427-441
%V 41
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1982_41_4_a1/
%G en
%F SM_1982_41_4_a1
A. I. Aptekarev. Asymptotics of Hadamard determinants and the convergence of rows of Padé approximants for sums of exponentials. Sbornik. Mathematics, Tome 41 (1982) no. 4, pp. 427-441. http://geodesic.mathdoc.fr/item/SM_1982_41_4_a1/

[1] H. S. Wall, Analytic theory of continued fraction, Van Nostrand, New York, 1948 | MR | Zbl

[2] O. Perron, Die Lehre von den Kettenbruchen, Br. II, Teubner, Stuttgart, 1957 | MR | Zbl

[3] H. Pade, “Memoire sur les developpements en fractions continues de la fonctial exponential”, Ann. Sci. Ecole Norm. Super, 16:3 (1899), 394–426 | MR

[4] F. Klein, Elementarnaya matematika s tochki zreniya vysshei, t. 1, GTTI, Moskva–Leningrad, 1933

[5] A. Edrei, “Convergence of the complete Pade table of trigonometric functions”, J. Appr. Theory, 15:4 (1975), 278–293 | DOI | MR | Zbl

[6] A. A. Gonchar, “O skhodimosti obobschennykh approksimatsii Pade meromorfnykh funktsii”, Matem. sb., 98(140) (1975), 564–577 | Zbl

[7] Dzh. V. S. Kassels, Vvedenie v teoriyu diofantovykh priblizhenii, IL, Moskva, 1961

[8] A. O. Gelfond, Ischislenie konechnykh raznostei, izd-vo “Nauka”, Moskva, 1967 | MR