Asymptotics of Hadamard determinants and the convergence of rows of Pad\'e approximants for sums of exponentials
Sbornik. Mathematics, Tome 41 (1982) no. 4, pp. 427-441
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotics of Hadamard determinants $\Delta_{n,m}$ (of dimension $m\times m$) for arbitrary fixed $m$ and $n\to\infty$ for the function $f(z)=\sum^k_{t=1}e^{\lambda_tz}$ are studied, where $\{\lambda_t\}^k_{t=1}$ are distinct complex numbers with unit modulus. A theorem on the convergence of the $(s\cdot p)$th row of the Padé table for the function $f(z)=\sum^k_{t=1}e^{\lambda_tz}$ ($\{\lambda_t\}^k_{t=1}$ are arbitrary distinct complex numbers) in the topology of $H(\mathbf C)$ holds for arbitrary natural numbers $p$ and $s$ equal to the number of $\lambda_t$ with modulus that is maximal among the $\{\lambda_t\}^k_{t=1}$.
Bibliography: 8 titles.
@article{SM_1982_41_4_a1,
author = {A. I. Aptekarev},
title = {Asymptotics of {Hadamard} determinants and the convergence of rows of {Pad\'e} approximants for sums of exponentials},
journal = {Sbornik. Mathematics},
pages = {427--441},
publisher = {mathdoc},
volume = {41},
number = {4},
year = {1982},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1982_41_4_a1/}
}
TY - JOUR AU - A. I. Aptekarev TI - Asymptotics of Hadamard determinants and the convergence of rows of Pad\'e approximants for sums of exponentials JO - Sbornik. Mathematics PY - 1982 SP - 427 EP - 441 VL - 41 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1982_41_4_a1/ LA - en ID - SM_1982_41_4_a1 ER -
A. I. Aptekarev. Asymptotics of Hadamard determinants and the convergence of rows of Pad\'e approximants for sums of exponentials. Sbornik. Mathematics, Tome 41 (1982) no. 4, pp. 427-441. http://geodesic.mathdoc.fr/item/SM_1982_41_4_a1/