On a~new type of bifurcations on manifolds
Sbornik. Mathematics, Tome 41 (1982) no. 3, pp. 403-407

Voir la notice de l'article provenant de la source Math-Net.Ru

Palis and Pugh asked if there exists a one-parameter family of smooth vector fields on a compact manifold, having a closed orbit which depends continuously on the parameter but whose period is not bounded above (as a function of the parameter) and which disappears at a finite (positive) distance from the set of singular points of the vector field. In this paper we answer this question affirmatively. Moreover, we formulate a condition for the existence of the corresponding bifurcation of a smooth vector field without singularities on a closed two-dimensional manifold, and we give concrete examples. Bibliography: 4 titles.
@article{SM_1982_41_3_a4,
     author = {V. S. Medvedev},
     title = {On a~new type of bifurcations on manifolds},
     journal = {Sbornik. Mathematics},
     pages = {403--407},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_3_a4/}
}
TY  - JOUR
AU  - V. S. Medvedev
TI  - On a~new type of bifurcations on manifolds
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 403
EP  - 407
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_41_3_a4/
LA  - en
ID  - SM_1982_41_3_a4
ER  - 
%0 Journal Article
%A V. S. Medvedev
%T On a~new type of bifurcations on manifolds
%J Sbornik. Mathematics
%D 1982
%P 403-407
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_41_3_a4/
%G en
%F SM_1982_41_3_a4
V. S. Medvedev. On a~new type of bifurcations on manifolds. Sbornik. Mathematics, Tome 41 (1982) no. 3, pp. 403-407. http://geodesic.mathdoc.fr/item/SM_1982_41_3_a4/