Algorithmic questions for linear algebraic groups.~II
Sbornik. Mathematics, Tome 41 (1982) no. 3, pp. 329-359

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, given a linear algebraic group defined over an algebraic number field and satisfying certain conditions, there exists an algorithm which determines whether or not two double cosets of a special type coincide in its adele group, and which enumerates all such double cosets. This result is applied to the isomorphism problem for finitely generated nilpotent groups, and also to other problems. Bibliography: 18 titles.
@article{SM_1982_41_3_a1,
     author = {R. A. Sarkisyan},
     title = {Algorithmic questions for linear algebraic {groups.~II}},
     journal = {Sbornik. Mathematics},
     pages = {329--359},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_3_a1/}
}
TY  - JOUR
AU  - R. A. Sarkisyan
TI  - Algorithmic questions for linear algebraic groups.~II
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 329
EP  - 359
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_41_3_a1/
LA  - en
ID  - SM_1982_41_3_a1
ER  - 
%0 Journal Article
%A R. A. Sarkisyan
%T Algorithmic questions for linear algebraic groups.~II
%J Sbornik. Mathematics
%D 1982
%P 329-359
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_41_3_a1/
%G en
%F SM_1982_41_3_a1
R. A. Sarkisyan. Algorithmic questions for linear algebraic groups.~II. Sbornik. Mathematics, Tome 41 (1982) no. 3, pp. 329-359. http://geodesic.mathdoc.fr/item/SM_1982_41_3_a1/