Algorithmic questions for linear algebraic groups. II
Sbornik. Mathematics, Tome 41 (1982) no. 3, pp. 329-359 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that, given a linear algebraic group defined over an algebraic number field and satisfying certain conditions, there exists an algorithm which determines whether or not two double cosets of a special type coincide in its adele group, and which enumerates all such double cosets. This result is applied to the isomorphism problem for finitely generated nilpotent groups, and also to other problems. Bibliography: 18 titles.
@article{SM_1982_41_3_a1,
     author = {R. A. Sarkisyan},
     title = {Algorithmic questions for linear algebraic {groups.~II}},
     journal = {Sbornik. Mathematics},
     pages = {329--359},
     year = {1982},
     volume = {41},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_3_a1/}
}
TY  - JOUR
AU  - R. A. Sarkisyan
TI  - Algorithmic questions for linear algebraic groups. II
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 329
EP  - 359
VL  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1982_41_3_a1/
LA  - en
ID  - SM_1982_41_3_a1
ER  - 
%0 Journal Article
%A R. A. Sarkisyan
%T Algorithmic questions for linear algebraic groups. II
%J Sbornik. Mathematics
%D 1982
%P 329-359
%V 41
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1982_41_3_a1/
%G en
%F SM_1982_41_3_a1
R. A. Sarkisyan. Algorithmic questions for linear algebraic groups. II. Sbornik. Mathematics, Tome 41 (1982) no. 3, pp. 329-359. http://geodesic.mathdoc.fr/item/SM_1982_41_3_a1/

[1] R. A. Sarkisyan, “Algoritmicheskie voprosy dlya lineinykh algebraicheskikh grupp. I”, Matem. sb., 113(155):2(10) (1980), 179–216 | MR | Zbl

[2] R. A. Sarkisyan, “Kogomologii Galua i nekotorye voprosy teorii algoritmov”, Matem. sb., 111(153) (1980), 579–609 | MR | Zbl

[3] A. Borel, Kharish-Chandra, “Fundamentalnye mnozhestva dlya arifmeticheskikh podgrupp”, Matematika, 8:2 (1964), 19–71 | MR

[4] R. A. Sarkisyan, “Problema sopryazhennosti dlya naborov tselochislennykh matrits”, Matem. zametki, 25:6 (1979), 811–824 | MR | Zbl

[5] A. Borel, “Some finiteness properties of adele groups over number fields”, Publ. Math., Inst. Hautes Etudes Scient, 1963, no. 16, Presses Universitaires de France, Paris | MR

[6] A. Borel, “Arifmeticheskie svoistva algebraicheskikh grupp”, Matematika, 8:2 (1964), 3–17 | MR

[7] H. Behr, “Über die endliche Definirbarkeit von Gruppen”, J. reine und angew. Math., 211:3/4 (1962), 116–122 | MR | Zbl

[8] A. Borel, “Fundamentalnye mnozhestva arifmeticheskikh grupp i avtomorfnye formy”, Matematika, 12:4 (1968), 80–103

[9] Seminar po algebraicheskim gruppam, sb. statei, izd-vo “Mir”, Moskva, 1973 | MR

[10] D. K. Faddeev, “Ob ekvivalentnosti sistem tselochislennykh matrits”, Izv. AN SSSR, seriya matem., 30 (1966), 449–454 | MR | Zbl

[11] V. N. Remeslennikov, “Ob odnoi algoritmicheskoi zadache dlya nilpotentnykh grupp i kolets”, Sib. matem. zh., XX:5 (1979), 1077–1081 | MR

[12] M. I. Kargapolov, V. N. Remeslennikov, N. S. Romanovskii, V. A. Romankov, V. A. Churkin, “Algoritmicheskie voprosy dlya $\mathscr O$-stepennykh grupp”, Algebra i logika, 8:5 (1969), 643–659 | MR | Zbl

[13] F. Kholl, “Nilpotentnye gruppy”, Matematika, 12:1 (1969), 3–37

[14] A. I. Maltsev, “Ob odnom klasse odnorodnykh prostranstv”, Izv. AN SSSR, seriya matem., 13 (1949), 9–32

[15] A. I. Maltsev, “Nilpotentnye gruppy bez krucheniya”, Izv. AN SSSR, seriya matem., 13 (1949), 201–212

[16] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, izd-vo “Nauka”, Moskva, 1977 | MR | Zbl

[17] A. Frelikh i Dzh. Kasels (pod red.), Algebraicheskaya teoriya chisel, sb. statei, izd-vo “Mir”, Moskva, 1969

[18] X. Kokh, Teoriya Galua $p$-rasshirenii, izd-vo “Mir”, Moskva, 1973 | MR