A~generalization of the Wiener--Hopf method for convolution equations on a~finite interval with symbols having power-like asymptotics at infinity
Sbornik. Mathematics, Tome 41 (1982) no. 3, pp. 289-328
Voir la notice de l'article provenant de la source Math-Net.Ru
A generalization of the Wiener–Hopf method is obtained for convolution equations on the finite interval $(-T,T)$
$$
(\mathbf Ku)(t)=f(t),\qquad|t|,
$$
where $\mathbf K$ is the convolution operator $\mathbf Ku(t)=(r_{(-T,T)}k*u)(t)$, $u(t)\in\mathscr S'(\mathbf R^1)$, $u(t)\equiv0$ for $|t|>T$, $*$ is the convolution operation, $k=k(t)$ is a kernel belonging to $\mathscr S'(\mathbf R^1)$, $r_{(-T,T)}$ is the operator of restriction of a generalized function to the interval $(-T,T)$, and $f(t)\in\mathscr D'(-T,T)$. Here $\mathscr S(\mathbf R^1)$ and $\mathscr S'(\mathbf R^1)$ are the Schwartz spaces of rapidly decreasing test functions and generalized functions of slow growth on $\mathbf R^1$, respectively.
Bibliogrpahy: 19 titles.
@article{SM_1982_41_3_a0,
author = {B. V. Pal'tsev},
title = {A~generalization of the {Wiener--Hopf} method for convolution equations on a~finite interval with symbols having power-like asymptotics at infinity},
journal = {Sbornik. Mathematics},
pages = {289--328},
publisher = {mathdoc},
volume = {41},
number = {3},
year = {1982},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1982_41_3_a0/}
}
TY - JOUR AU - B. V. Pal'tsev TI - A~generalization of the Wiener--Hopf method for convolution equations on a~finite interval with symbols having power-like asymptotics at infinity JO - Sbornik. Mathematics PY - 1982 SP - 289 EP - 328 VL - 41 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1982_41_3_a0/ LA - en ID - SM_1982_41_3_a0 ER -
%0 Journal Article %A B. V. Pal'tsev %T A~generalization of the Wiener--Hopf method for convolution equations on a~finite interval with symbols having power-like asymptotics at infinity %J Sbornik. Mathematics %D 1982 %P 289-328 %V 41 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1982_41_3_a0/ %G en %F SM_1982_41_3_a0
B. V. Pal'tsev. A~generalization of the Wiener--Hopf method for convolution equations on a~finite interval with symbols having power-like asymptotics at infinity. Sbornik. Mathematics, Tome 41 (1982) no. 3, pp. 289-328. http://geodesic.mathdoc.fr/item/SM_1982_41_3_a0/