A~generalization of the Wiener--Hopf method for convolution equations on a~finite interval with symbols having power-like asymptotics at infinity
Sbornik. Mathematics, Tome 41 (1982) no. 3, pp. 289-328

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of the Wiener–Hopf method is obtained for convolution equations on the finite interval $(-T,T)$ $$ (\mathbf Ku)(t)=f(t),\qquad|t|, $$ where $\mathbf K$ is the convolution operator $\mathbf Ku(t)=(r_{(-T,T)}k*u)(t)$, $u(t)\in\mathscr S'(\mathbf R^1)$, $u(t)\equiv0$ for $|t|>T$, $*$ is the convolution operation, $k=k(t)$ is a kernel belonging to $\mathscr S'(\mathbf R^1)$, $r_{(-T,T)}$ is the operator of restriction of a generalized function to the interval $(-T,T)$, and $f(t)\in\mathscr D'(-T,T)$. Here $\mathscr S(\mathbf R^1)$ and $\mathscr S'(\mathbf R^1)$ are the Schwartz spaces of rapidly decreasing test functions and generalized functions of slow growth on $\mathbf R^1$, respectively. Bibliogrpahy: 19 titles.
@article{SM_1982_41_3_a0,
     author = {B. V. Pal'tsev},
     title = {A~generalization of the {Wiener--Hopf} method for convolution equations on a~finite interval with symbols having power-like asymptotics at infinity},
     journal = {Sbornik. Mathematics},
     pages = {289--328},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_3_a0/}
}
TY  - JOUR
AU  - B. V. Pal'tsev
TI  - A~generalization of the Wiener--Hopf method for convolution equations on a~finite interval with symbols having power-like asymptotics at infinity
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 289
EP  - 328
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_41_3_a0/
LA  - en
ID  - SM_1982_41_3_a0
ER  - 
%0 Journal Article
%A B. V. Pal'tsev
%T A~generalization of the Wiener--Hopf method for convolution equations on a~finite interval with symbols having power-like asymptotics at infinity
%J Sbornik. Mathematics
%D 1982
%P 289-328
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_41_3_a0/
%G en
%F SM_1982_41_3_a0
B. V. Pal'tsev. A~generalization of the Wiener--Hopf method for convolution equations on a~finite interval with symbols having power-like asymptotics at infinity. Sbornik. Mathematics, Tome 41 (1982) no. 3, pp. 289-328. http://geodesic.mathdoc.fr/item/SM_1982_41_3_a0/