On harmonic mappings of Riemann surfaces and fibered manifolds
Sbornik. Mathematics, Tome 41 (1982) no. 2, pp. 281-287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper contains a new criterion for mappings of Riemannian manifolds to be harmonic and (as a consequence) new proofs of earlier results on harmonic mappings of closed compact Riemann surfaces. It also contains a theorem that establishes necessary and sufficient conditions that a homomorphism of Riemannian fibrations should be harmonic, in terms of mappings of the fibers and a quotient mapping of the bases of the fibrations. Bibliography: 11 titles.
@article{SM_1982_41_2_a7,
     author = {A. I. Pluzhnikov},
     title = {On harmonic mappings of {Riemann} surfaces and fibered manifolds},
     journal = {Sbornik. Mathematics},
     pages = {281--287},
     year = {1982},
     volume = {41},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_2_a7/}
}
TY  - JOUR
AU  - A. I. Pluzhnikov
TI  - On harmonic mappings of Riemann surfaces and fibered manifolds
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 281
EP  - 287
VL  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1982_41_2_a7/
LA  - en
ID  - SM_1982_41_2_a7
ER  - 
%0 Journal Article
%A A. I. Pluzhnikov
%T On harmonic mappings of Riemann surfaces and fibered manifolds
%J Sbornik. Mathematics
%D 1982
%P 281-287
%V 41
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1982_41_2_a7/
%G en
%F SM_1982_41_2_a7
A. I. Pluzhnikov. On harmonic mappings of Riemann surfaces and fibered manifolds. Sbornik. Mathematics, Tome 41 (1982) no. 2, pp. 281-287. http://geodesic.mathdoc.fr/item/SM_1982_41_2_a7/

[1] J. Eells, H. Sampson, “Harmonic mappings of Riemannian manifolds”, Amer. J. Math., 86:1 (1964), 109–160 | DOI | MR | Zbl

[2] J. Eells, L. Lemaire, “A report on harmonic maps”, Bull. London Math. Soc., 10:1 (1978), 1–68 | DOI | MR | Zbl

[3] H. B. Lawson, “The equivariant Platean problem and interior regularity”, Trans. Amer. Math. Soc., 173 (1972), 231–249 | DOI | MR | Zbl

[4] D. Gromol, V. Klingeberg, V. Meier, Rimanova geometriya v tselom, izd-vo “Mir”, Moskva, 1971

[5] A. T. Fomenko, “Mnogomernye zadachi Plato na rimanovykh mnogoobraziyakh i ekstraordinarnye teorii gomologii i kogomologii”, Trudy seminara po vektornomu i tenzornomu analizu, 18, izd-vo MGU, Moskva, 1978, 4–93 | MR

[6] R. T. Smith, “Harmonic mappings of spheres”, Amer. J. Math., 97:2 (1975), 364–385 | DOI | MR | Zbl

[7] I. Kra, Avtomorfnye formy i kleinovy gruppy, izd-vo “Mir”, Moskva, 1975 | MR

[8] Chern Shing-shen, S. I. Goldbery, “On the volume decreasing property of a class of real harmonic mappings”, Amer. J. Math., 97:1 (1975), 133–147 | DOI | MR | Zbl

[9] L. Lemaire, “Applications harmoniques de varietes a bord”, C. r. Sci. Acad., Paris, A279 (1974), 925–927 | MR

[10] J. H. Sampson, “Some properties and applications of harmonic mappings”, Ann. Ecole Norm. Super., 11 (1978) | MR | Zbl

[11] J. C. Wood, “Harmonic maps and complex analysis”, Prac. Summer Course in Complex Analysis, 3, Trieste, 1976, 289–308 | MR | Zbl