On equations of the form $\Delta u=f(x,u,Du)$
Sbornik. Mathematics, Tome 41 (1982) no. 2, pp. 269-280 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dirichlet problem is investigated for equations of the form $\Delta u=f(x,u,Du)$ in a bounded domain $\Omega$ in $\mathbf R^n$ with a $C^2$-boundary. This problem is studied in the Sobolev space $W^2_p(\Omega)$ with $p>n$. An exact condition is obtained for the growth of the function $f(x,u,\xi)$ with values in $L_p(\Omega)$ with respect to $\xi\in\mathbf R^n$, under which an a priori estimate of $\|u\|_\infty$ for the solution of the problem generates an estimate for $\|Du\|_\infty$. The theory of the solvability of such problems is studied, based on upper and lower solutions. Existence theorems are obtained. Bibliography: 7 titles.
@article{SM_1982_41_2_a6,
     author = {S. I. Pokhozhaev},
     title = {On equations of the form $\Delta u=f(x,u,Du)$},
     journal = {Sbornik. Mathematics},
     pages = {269--280},
     year = {1982},
     volume = {41},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_2_a6/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - On equations of the form $\Delta u=f(x,u,Du)$
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 269
EP  - 280
VL  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1982_41_2_a6/
LA  - en
ID  - SM_1982_41_2_a6
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T On equations of the form $\Delta u=f(x,u,Du)$
%J Sbornik. Mathematics
%D 1982
%P 269-280
%V 41
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1982_41_2_a6/
%G en
%F SM_1982_41_2_a6
S. I. Pokhozhaev. On equations of the form $\Delta u=f(x,u,Du)$. Sbornik. Mathematics, Tome 41 (1982) no. 2, pp. 269-280. http://geodesic.mathdoc.fr/item/SM_1982_41_2_a6/

[1] H. Amann, M. G. Crandall, “On some existence theoremes for semi-linear elliptic equations”, Ind. Univ. Math. J., 27:5 (1978), 779–790 | DOI | MR | Zbl

[2] I. L. Kazdan, R. I. Kramer, “Invariant criteria for existence of solutions to second-order quasilinear elliptic equations”, Comm. Pure Appl. Math., 31:5 (1978), 619–645 | DOI | MR | Zbl

[3] S. N. Bernshtein, Ob uravneniyakh variatsionnogo ischisleniya, Sobranie sochinenii, t. III, izd-vo AN SSSR, Moskva, 1960

[4] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, izd-vo “Nauka”, Moskva, 1973 | MR

[5] A. D. Aleksandrov, “Usloviya edinstvennosti i otsenki resheniya zadachi Dirikhle”, Vestnik LGU, seriya matem., mekh. i astronomii, 1963, no. 13, vyp. 3, 5–29 | Zbl

[6] A. Friedman, Partial Differential Equations, Academic Press, New York, 1969 | MR

[7] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, izd-vo SO AN SSSR, Novosibirsk, 1962