Asymptotics of fundamental solutions of second-order divergence differential equations
Sbornik. Mathematics, Tome 41 (1982) no. 2, pp. 249-267 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $K(x,y)$ be the fundamental solution of a divergence operator of the following form: $$ A=-\sum^n_{i,j=1}\frac\partial{\partial x_i}a_{ij}(x)\frac\partial{\partial x_j}. $$ Two types of asymptotics of $K(x,y)$ are considered in the paper: the asymptotic behavior at infinity, i.e. as $|x-y|\to\infty$, and the asymptotic behavior of $K(x,y)$ at $x=y$. In the first case, for operators with smooth, quasiperiodic coefficients the principal term of the asymptotic expression is found, and a power estimate of the remainder term is established. In the second case the principal term in the asymptotic expression for $K(x,y)$ as $x\to y$ is found for an operator $A$ with arbitrary bounded and measurable coefficients $\{a_{ij}(x)\}$. These results are obtained by means of the concept of the $G$-convergence of elliptic differential operators. Further, applications of the results are given to the asymptotics of the spectrum of the operator $A$ in a bounded domain $\Omega$. Bibliography: 13 titles.
@article{SM_1982_41_2_a5,
     author = {S. M. Kozlov},
     title = {Asymptotics of fundamental solutions of second-order divergence differential equations},
     journal = {Sbornik. Mathematics},
     pages = {249--267},
     year = {1982},
     volume = {41},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_2_a5/}
}
TY  - JOUR
AU  - S. M. Kozlov
TI  - Asymptotics of fundamental solutions of second-order divergence differential equations
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 249
EP  - 267
VL  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1982_41_2_a5/
LA  - en
ID  - SM_1982_41_2_a5
ER  - 
%0 Journal Article
%A S. M. Kozlov
%T Asymptotics of fundamental solutions of second-order divergence differential equations
%J Sbornik. Mathematics
%D 1982
%P 249-267
%V 41
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1982_41_2_a5/
%G en
%F SM_1982_41_2_a5
S. M. Kozlov. Asymptotics of fundamental solutions of second-order divergence differential equations. Sbornik. Mathematics, Tome 41 (1982) no. 2, pp. 249-267. http://geodesic.mathdoc.fr/item/SM_1982_41_2_a5/

[1] E. De Giorgi, “Sulla differenziabilitae l'analiticita delle estremali degli integrali multiple regolari”, Mem. Acad. Sci. Torino, ser. 3, 3:1 (1957), 25–43 | MR | Zbl

[2] J. Nash, “Continuity of solutions of parabolic and elliptic”, Amer. J. Math., 80 (1958), 931–954 | DOI | MR | Zbl

[3] W. Littman, G. Stampacchia, H. F. Weinberger, Regular points for elliptic equations with discontinous coefficients, Univ. of Minesota, December 1962 | MR

[4] S. M. Kozlov, Osrednenie differentsialnykh operatorov s pochti-periodicheskimi bystroostsiliruyuschimi koeffitsientami, 236:5 (1977), 1068–1071 | MR | Zbl

[5] S. M. Kozlov, “Osrednenie operatorov s pochti-periodicheskimi koeffitsientami”, Matem. sb., 107(149) (1978), 199–217 | MR | Zbl

[6] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Kha Ten Ngoan, “Usrednenie i G-skhodimost differentsialnykh operatorov”, Uspekhi matem. nauk, XXXIV:5(209) (1979), 65–133 | MR

[7] M. Sh. Birman, M. 3. Solomyak, “O glavnom chlene spektralnoi asimptotiki dlya negladkikh ellipticheskikh zadach”, Funkts. analiz, 4:4 (1970), 1–13 | MR | Zbl

[8] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, izd-vo “Mir”, Moskva, 1973 | MR

[9] N. G. Meyers, “An $L^p$-estimate for the gradient of solution of second order equation”, Ann. Sci. super Norm. de Pisa, 17:2 (1963), 189–207 | MR

[10] E. V. Sevastyanova, Diplomnaya rabota, MGU, 1979

[11] M. Sh. Birman, M. Z. Solomyak, “Asimptotika spektra differentsialnykh uravnenii”, Itogi nauki i tekhniki. Matematicheskii analiz, 14, VINITI, Moskva, 1977, 5–58 | MR | Zbl

[12] D. G. Aronson, “Bounds for the fundamental solution of a parabolic equations”, Bull. Amer. Math. Soc., 73 (1967), 89–896 | DOI | MR

[13] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. II, izd-vo “Mir”, Moskva, 1967