Legendre uniformization of multi-valued analytic functions
Sbornik. Mathematics, Tome 41 (1982) no. 2, pp. 217-234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the first part of this article, the notion of Legendre uniformization of a multi-valued analytic function is introduced. This is a global generalization of the Leray uniformization, and consists in representing the function as an integral of Feynman type naturally associated with a certain Legendre manifold. In the second part of the article, a transformation of Fourier type is defined for a certain class of uniformized functions, and an inversion formula is proved. Also, some natural commutation relations with differentiations and multiplications by the independent variables are established. Bibliography: 11 titles.
@article{SM_1982_41_2_a3,
     author = {B. Yu. Sternin and V. E. Shatalov},
     title = {Legendre uniformization of multi-valued analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {217--234},
     year = {1982},
     volume = {41},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_2_a3/}
}
TY  - JOUR
AU  - B. Yu. Sternin
AU  - V. E. Shatalov
TI  - Legendre uniformization of multi-valued analytic functions
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 217
EP  - 234
VL  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1982_41_2_a3/
LA  - en
ID  - SM_1982_41_2_a3
ER  - 
%0 Journal Article
%A B. Yu. Sternin
%A V. E. Shatalov
%T Legendre uniformization of multi-valued analytic functions
%J Sbornik. Mathematics
%D 1982
%P 217-234
%V 41
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1982_41_2_a3/
%G en
%F SM_1982_41_2_a3
B. Yu. Sternin; V. E. Shatalov. Legendre uniformization of multi-valued analytic functions. Sbornik. Mathematics, Tome 41 (1982) no. 2, pp. 217-234. http://geodesic.mathdoc.fr/item/SM_1982_41_2_a3/

[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, izd-vo “Nauka”, Moskva, 1974 | MR

[2] R. Ganning, X. Rossi, Analiticheskie funktsii mnogikh kompleksnykh peremennykh, izd-vo “Mir”, Moskva, 1969 | MR

[3] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Fizmatgiz, Moskva, 1962

[4] Zh. Lere, Differentsialnoe i integralnoe ischislenie na kompleksno-analiticheskom mnogoobrazii, izd-vo “Mir”, Moskva, 1961

[5] Zh. Lere, L. Gording, T. Kotake, Zadacha Koshi, izd-vo “Mir”, Moskva, 1967

[6] Zh. Lere, Obobschennoe preobrazovanie Laplasa, izd-vo “Mir”, Moskva, 1969 | MR

[7] Dzh. Milnor, Osobye tochki kompleksnykh giperpoverkhnostei, izd-vo “Mir”, Moskva, 1971 | MR

[8] B. Yu. Sternin, V. E. Shatalov, “Kompleksno-analiticheskie lagranzhevy mnogoobraziya i integraly Feinmana”, Uspekhi matem. nauk, 34:6(210) (1979), 194–198 | MR | Zbl

[9] F. Fam, Vvedenie v topologicheskoe issledovanie osobennostei Landau, izd-vo “Mir”, Moskva, 1970

[10] L. Khermander, “Integralnye operatory Fure. I”, Matematika, 16:1 (1972), 17–21; 16:2, 67–136 | Zbl

[11] J. Leray, “Problème de Cauchy. I–IV”, Bull. Soc. Math. France, 85 (1957), 389–429 ; 86 (1958), 75–96 ; 87, 205–212; 90 (1962), 39–156 | MR | Zbl | MR | Zbl | MR | Zbl