Elliptic equations of infinite order with arbitrary nonlinearities and corresponding function spaces
Sbornik. Mathematics, Tome 41 (1982) no. 2, pp. 203-216 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies the Dirichlet problem for elliptic equations of infinite order with arbitrary nonlinearities specified in a bounded domain of Euclidean space. An effective method of testing the nontriviality of the corresponding “energy” function spaces is presented. Bibliography: 15 titles.
@article{SM_1982_41_2_a2,
     author = {Tran Duc Van},
     title = {Elliptic equations of infinite order with arbitrary nonlinearities and corresponding function spaces},
     journal = {Sbornik. Mathematics},
     pages = {203--216},
     year = {1982},
     volume = {41},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_2_a2/}
}
TY  - JOUR
AU  - Tran Duc Van
TI  - Elliptic equations of infinite order with arbitrary nonlinearities and corresponding function spaces
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 203
EP  - 216
VL  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1982_41_2_a2/
LA  - en
ID  - SM_1982_41_2_a2
ER  - 
%0 Journal Article
%A Tran Duc Van
%T Elliptic equations of infinite order with arbitrary nonlinearities and corresponding function spaces
%J Sbornik. Mathematics
%D 1982
%P 203-216
%V 41
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1982_41_2_a2/
%G en
%F SM_1982_41_2_a2
Tran Duc Van. Elliptic equations of infinite order with arbitrary nonlinearities and corresponding function spaces. Sbornik. Mathematics, Tome 41 (1982) no. 2, pp. 203-216. http://geodesic.mathdoc.fr/item/SM_1982_41_2_a2/

[1] Yu. A. Dubinskii, “Prostranstva Soboleva beskonechnogo poryadka i povedenie reshenii nekotorykh kraevykh zadach pri neogranichennom vozrastanii poryadka uravnenii”, Matem. sb., 98(140) (1975), 163–184 | MR | Zbl

[2] Yu. A. Dubinskii, “Nelineinye ellipticheskie i parabolicheskie uravneniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 9, VINITI, Moskva, 1976, 5–130

[3] Chan Dyk Van, “Kraevaya zadacha dlya vyrozhdayuschikhsya nelineinykh obyknovennykh differentsialnykh uravnenii beskonechnogo poryadka”, Diff. uravneniya, 14 (1978), 2202–2211

[4] Chan Dyk Van, “Prostranstva Soboleva beskonechnogo poryadka s vesom v polose i razreshimost kraevykh zadach dlya vyrozhdayuschikhsya nelineinykh ellipticheskikh uravnenii”, DAN SSSR, 240:4 (1978), 794–797 | MR | Zbl

[5] M. I. Vishik, “O razreshimosti pervoi kraevoi zadachi dlya kvazilineinykh uravnenii s bystro rastuschimi koeffitsientami v klassakh Orlicha”, DAN SSSR, 151:4 (1963), 758–761 | Zbl

[6] T. Donaldson, “Inhomogeneous Orlicz–Sobolev spaces and nonlinear parabolic initial value problems”, J. Diff. equations, 16 (1974), 201–256 | DOI | MR | Zbl

[7] A. Fougeres, “Opérateurs elliptiques du calcul des variations à coefficients très fortement non linéaires”, C. r. Acad. sci., Paris, 274 (1972), 763–766 | MR | Zbl

[8] J. Gossez, “Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients”, Trans. Amer. Math. Soc., 190 (1974), 163–205 | DOI | MR | Zbl

[9] J. Gossez, “Orlicz–Sobolev spaces and nonlinear elliptic boundary value problems”, Proc. Spring School (Horni Bradlo, 1978), Teubner-Texte Math., Leipzig, 1979, 59–94 | MR

[10] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, Moskva, 1958 | MR

[11] A. Kufner, O. John, S. Fučik, Function spaces, Academia, Prague, 1977 | MR | Zbl

[12] S. Mandelbroit, Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, Gostekhizdat, Moskva, 1955

[13] P. Lelong, “Sur une propriété de quasi-analyticité des fonctions de plusieurs variables”, C. r. Acad. Sci., Paris, 232 (1951), 1178–1180 | MR | Zbl

[14] Zh. L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, izd-vo “Mir”, Moskva, 1972 | MR

[15] Chan Dyk Van, “Netrivialnost prostranstv Soboleva–Orlicha beskonechnogo poryadka v ogranichennoi oblasti evklidova prostranstva”, DAN SSSR, 250:6 (1980), 1331–1334 | MR | Zbl