Algorithmic questions for linear algebraic groups.~I
Sbornik. Mathematics, Tome 41 (1982) no. 2, pp. 149-179
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a linear algebraic group defined over the field of rational numbers and subject to certain conditions, let $G(\mathbf R)$ be its group of real points, and let $G(\mathbf Z,m)$ be a congruence-subgroup of its group of integer points. In this paper it is proved that, using a recursive procedure, one can construct a fundamental set of $G(\mathbf Z,m)$ in $G(\mathbf R)$. This result will be applied in the second part of the article.
Bibliography: 18 titles.
@article{SM_1982_41_2_a0,
author = {R. A. Sarkisyan},
title = {Algorithmic questions for linear algebraic {groups.~I}},
journal = {Sbornik. Mathematics},
pages = {149--179},
publisher = {mathdoc},
volume = {41},
number = {2},
year = {1982},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1982_41_2_a0/}
}
R. A. Sarkisyan. Algorithmic questions for linear algebraic groups.~I. Sbornik. Mathematics, Tome 41 (1982) no. 2, pp. 149-179. http://geodesic.mathdoc.fr/item/SM_1982_41_2_a0/