Algorithmic questions for linear algebraic groups.~I
Sbornik. Mathematics, Tome 41 (1982) no. 2, pp. 149-179

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a linear algebraic group defined over the field of rational numbers and subject to certain conditions, let $G(\mathbf R)$ be its group of real points, and let $G(\mathbf Z,m)$ be a congruence-subgroup of its group of integer points. In this paper it is proved that, using a recursive procedure, one can construct a fundamental set of $G(\mathbf Z,m)$ in $G(\mathbf R)$. This result will be applied in the second part of the article. Bibliography: 18 titles.
@article{SM_1982_41_2_a0,
     author = {R. A. Sarkisyan},
     title = {Algorithmic questions for linear algebraic {groups.~I}},
     journal = {Sbornik. Mathematics},
     pages = {149--179},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_2_a0/}
}
TY  - JOUR
AU  - R. A. Sarkisyan
TI  - Algorithmic questions for linear algebraic groups.~I
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 149
EP  - 179
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_41_2_a0/
LA  - en
ID  - SM_1982_41_2_a0
ER  - 
%0 Journal Article
%A R. A. Sarkisyan
%T Algorithmic questions for linear algebraic groups.~I
%J Sbornik. Mathematics
%D 1982
%P 149-179
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_41_2_a0/
%G en
%F SM_1982_41_2_a0
R. A. Sarkisyan. Algorithmic questions for linear algebraic groups.~I. Sbornik. Mathematics, Tome 41 (1982) no. 2, pp. 149-179. http://geodesic.mathdoc.fr/item/SM_1982_41_2_a0/