Imbedding of a~group of measure-preserving diffeomorphisms into a~semidirect product and its unitary representations
Sbornik. Mathematics, Tome 41 (1982) no. 1, pp. 67-81

Voir la notice de l'article provenant de la source Math-Net.Ru

The author considers the group $D^0(X,v)$ of diffeomorphisms of a compact manifold $X$ that preserve a measure $v$, and describes its unitary representations whose restrictions to any subgroup $D^0(Y,v)$, where $Y\simeq\mathbf R^n$, are continuous on $D^0(Y,v)$ with respect to convergence in measure in $D^0(Y,v)$. As an example, a family of representations $T^\alpha$ indexed by the nonzero elements $\alpha\in H^1(X,\mathbf R)$ is studied. Bibliography: 12 titles.
@article{SM_1982_41_1_a3,
     author = {R. S. Ismagilov},
     title = {Imbedding of a~group of measure-preserving diffeomorphisms into a~semidirect product and its unitary representations},
     journal = {Sbornik. Mathematics},
     pages = {67--81},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_1_a3/}
}
TY  - JOUR
AU  - R. S. Ismagilov
TI  - Imbedding of a~group of measure-preserving diffeomorphisms into a~semidirect product and its unitary representations
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 67
EP  - 81
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_41_1_a3/
LA  - en
ID  - SM_1982_41_1_a3
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%T Imbedding of a~group of measure-preserving diffeomorphisms into a~semidirect product and its unitary representations
%J Sbornik. Mathematics
%D 1982
%P 67-81
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_41_1_a3/
%G en
%F SM_1982_41_1_a3
R. S. Ismagilov. Imbedding of a~group of measure-preserving diffeomorphisms into a~semidirect product and its unitary representations. Sbornik. Mathematics, Tome 41 (1982) no. 1, pp. 67-81. http://geodesic.mathdoc.fr/item/SM_1982_41_1_a3/