Imbedding of a group of measure-preserving diffeomorphisms into a semidirect product and its unitary representations
Sbornik. Mathematics, Tome 41 (1982) no. 1, pp. 67-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author considers the group $D^0(X,v)$ of diffeomorphisms of a compact manifold $X$ that preserve a measure $v$, and describes its unitary representations whose restrictions to any subgroup $D^0(Y,v)$, where $Y\simeq\mathbf R^n$, are continuous on $D^0(Y,v)$ with respect to convergence in measure in $D^0(Y,v)$. As an example, a family of representations $T^\alpha$ indexed by the nonzero elements $\alpha\in H^1(X,\mathbf R)$ is studied. Bibliography: 12 titles.
@article{SM_1982_41_1_a3,
     author = {R. S. Ismagilov},
     title = {Imbedding of a~group of measure-preserving diffeomorphisms into a~semidirect product and its unitary representations},
     journal = {Sbornik. Mathematics},
     pages = {67--81},
     year = {1982},
     volume = {41},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_1_a3/}
}
TY  - JOUR
AU  - R. S. Ismagilov
TI  - Imbedding of a group of measure-preserving diffeomorphisms into a semidirect product and its unitary representations
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 67
EP  - 81
VL  - 41
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1982_41_1_a3/
LA  - en
ID  - SM_1982_41_1_a3
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%T Imbedding of a group of measure-preserving diffeomorphisms into a semidirect product and its unitary representations
%J Sbornik. Mathematics
%D 1982
%P 67-81
%V 41
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1982_41_1_a3/
%G en
%F SM_1982_41_1_a3
R. S. Ismagilov. Imbedding of a group of measure-preserving diffeomorphisms into a semidirect product and its unitary representations. Sbornik. Mathematics, Tome 41 (1982) no. 1, pp. 67-81. http://geodesic.mathdoc.fr/item/SM_1982_41_1_a3/

[1] P. R. Khalmosh, Lektsii po ergodicheskoi teorii, IL, Moskva, 1959

[2] H. Araki, “Factorisable representations of current algebras”, Publ. RIMS, Kyoto Univ., Serie A, 5:3 (1970), 361–422 | DOI | MR | Zbl

[3] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Predstavleniya gruppy $SL(2,R)$, gde $R$ – koltso funktsii”, Uspekhi matem. nauk, XXIX:3(177) (1974), 3–41

[4] S. Sternberg, Lektsii po differentsialnoi geometrii, izd-vo “Mir”, Moskva, 1970 | MR

[5] J. Moser, “On the volume elements of a manifold”, Trans. Amer. Math. Soc., 120:3 (1965), 286–294 | DOI | MR | Zbl

[6] A. B. Krygin, “Prodolzhenie diffeomorfizmov, sokhranyayuschikh ob'em”, Funkts. analiz, 5:2 (1971), 72–76 | MR | Zbl

[7] R. S. Ismagilov, “O gruppe diffeomorfizmov, sokhranyayuschikh ob'em”, Izv. AN SSSR, seriya matem., 44:4 (1980), 831–867 | MR | Zbl

[8] R. S. Ismagilov, “Unitarnye predstavleniya grupp diffeomorfizmov, sokhranyayuschikh meru”, Funkts. analiz, 11:3 (1977), 80–81 | MR

[9] R. S. Ismagilov, “Ob unitarnykh predstavleniyakh gruppy diffeomorfizmov, sokhranyayuschikh meru”, Funkts. analiz, 12:3 (1978), 80–81 | MR | Zbl

[10] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Neprivodimye predstavleniya gruppy $G^X$ i kogomologii”, Funkts. analiz, 8:2 (1974), 67–69 | MR | Zbl

[11] A. Fathi, Y.-M. Visetti, “Structure du group des homeomorphisms, preservant une mesure”, C. r. Sci. Acad., Paris, 284, Serie A–B:15, A191–A194 | MR

[12] P. S. Ismagilov, “Unitarnye predstavleniya gruppy diffeomorfizmov”, Izv. AN SSSR, seriya matem., 36 (1972), 180–208 | MR | Zbl