Approximation of periodic functions of several variables with bounded mixed difference
Sbornik. Mathematics, Tome 41 (1982) no. 1, pp. 53-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies questions concerning the approximation of functions of several variables by trigonometric polynomials whose harmonics lie in a “hyperbolic cross” and also properties of functions which do not have harmonics lying in a “hyperbolic cross”. Analogues of H. Bohr's inequality are obtained for such functions. Estimates of optimal order are obtained for the upper bounds of best approximations of certain classes of functions, defined using mixed differences, by trigonometric polynomials whose harmonics lie in a “hyperbolic cross”. The diameters of certain classes are found. Bibliography: 13 titles.
@article{SM_1982_41_1_a2,
     author = {V. N. Temlyakov},
     title = {Approximation of periodic functions of several variables with bounded mixed difference},
     journal = {Sbornik. Mathematics},
     pages = {53--66},
     year = {1982},
     volume = {41},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_1_a2/}
}
TY  - JOUR
AU  - V. N. Temlyakov
TI  - Approximation of periodic functions of several variables with bounded mixed difference
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 53
EP  - 66
VL  - 41
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1982_41_1_a2/
LA  - en
ID  - SM_1982_41_1_a2
ER  - 
%0 Journal Article
%A V. N. Temlyakov
%T Approximation of periodic functions of several variables with bounded mixed difference
%J Sbornik. Mathematics
%D 1982
%P 53-66
%V 41
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1982_41_1_a2/
%G en
%F SM_1982_41_1_a2
V. N. Temlyakov. Approximation of periodic functions of several variables with bounded mixed difference. Sbornik. Mathematics, Tome 41 (1982) no. 1, pp. 53-66. http://geodesic.mathdoc.fr/item/SM_1982_41_1_a2/

[1] K. I. Babenko, “Priblizhenie trigonometricheskimi polinomami v nekotorykh klassakh periodicheskikh funktsii neskolkikh peremennykh”, DAN SSSR, 132:5 (1960), 982–985 | MR | Zbl

[2] K. I. Babenko, “O priblizhenii periodicheskikh funktsii mnogikh peremennykh trigonometricheskimi mnogochlenami”, DAN SSSR, 132:2 (1960), 247–250 | MR | Zbl

[3] S. A. Telyakovskii, “Ob otsenkakh proizvodnykh trigonometricheskikh polinomov mnogikh peremennykh”, Sib. matem. zh., 4:6 (1963), 1404–1411

[4] S. A. Telyakovskii, “Nekotorye otsenki dlya trigonometricheskikh ryadov s kvazivypuklymi koeffitsientami”, Matem. sb., 63(105) (1964), 426–444

[5] Ya. S. Bugrov, “Priblizhenie klassa funktsii s dominiruyuschei proizvodnoi”, Matem. sb., 64(106) (1964), 410–418 | MR | Zbl

[6] Ya. S. Bugrov, “Konstruktivnaya kharakteristika klassov funktsii s dominiruyuschei smeshannoi proizvodnoi”, Trudy Matem. in-ta im. V. A. Steklova AN SSSR, CXXXI, 1974, 25–32 | MR

[7] N. S. Nikolskaya, “Priblizhenie differentsiruemykh funktsii mnogikh peremennykh summami Fure v metrike $L_p$”, Sib. matem. zh., 15:2 (1974), 395–412

[8] V. N. Temlyakov, “Priblizhenie periodicheskikh funktsii neskolkikh peremennykh s ogranichennoi smeshannoi proizvodnoi”, DAN SSSR, 248:3 (1979), 527–531 | MR | Zbl

[9] V. N. Temlyakov, “Priblizhenie periodicheskikh funktsii neskolkikh peremennykh s ogranichennoi smeshannoi proizvodnoi”, Trudy Matem. in-ta im. V. A. Steklova AN SSSR, CLVI, 1980, 233–260 | MR | Zbl

[10] A. Zigmund, Trigonometricheskie ryady, izd-vo “Mir”, Moskva, 1965 | MR

[11] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, izd-vo “Nauka”, Moskva, 1969 | MR

[12] N. P. Korneichuk, Ekstremalnye zadachi teorii priblizheniya, izd-vo “Nauka”, Moskva, 1976 | MR

[13] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, izd-vo “Nauka”, Moskva, 1975 | MR | Zbl