Approximation of periodic functions of several variables with bounded mixed difference
Sbornik. Mathematics, Tome 41 (1982) no. 1, pp. 53-66

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies questions concerning the approximation of functions of several variables by trigonometric polynomials whose harmonics lie in a “hyperbolic cross” and also properties of functions which do not have harmonics lying in a “hyperbolic cross”. Analogues of H. Bohr's inequality are obtained for such functions. Estimates of optimal order are obtained for the upper bounds of best approximations of certain classes of functions, defined using mixed differences, by trigonometric polynomials whose harmonics lie in a “hyperbolic cross”. The diameters of certain classes are found. Bibliography: 13 titles.
@article{SM_1982_41_1_a2,
     author = {V. N. Temlyakov},
     title = {Approximation of periodic functions of several variables with bounded mixed difference},
     journal = {Sbornik. Mathematics},
     pages = {53--66},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_1_a2/}
}
TY  - JOUR
AU  - V. N. Temlyakov
TI  - Approximation of periodic functions of several variables with bounded mixed difference
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 53
EP  - 66
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_41_1_a2/
LA  - en
ID  - SM_1982_41_1_a2
ER  - 
%0 Journal Article
%A V. N. Temlyakov
%T Approximation of periodic functions of several variables with bounded mixed difference
%J Sbornik. Mathematics
%D 1982
%P 53-66
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_41_1_a2/
%G en
%F SM_1982_41_1_a2
V. N. Temlyakov. Approximation of periodic functions of several variables with bounded mixed difference. Sbornik. Mathematics, Tome 41 (1982) no. 1, pp. 53-66. http://geodesic.mathdoc.fr/item/SM_1982_41_1_a2/