The axiomatic rank of a~quasivariety containing a~free solvable group
Sbornik. Mathematics, Tome 40 (1981) no. 4, pp. 583-590
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak P$ be the class of groups for which the commutator subgroup of each subgroup intersects the center of that subgroup in the identity. In this paper it is shown that if a quasivariety $\mathfrak M$ contains a non-Abelian group free in $\mathfrak A^2$ and if $\mathfrak M\subseteq\mathfrak P$, then $\mathfrak M$ cannot be given by a system of quasi-identities in a finite number of variables.
Bibliography: 9 titles.
@article{SM_1981_40_4_a6,
author = {A. I. Budkin},
title = {The axiomatic rank of a~quasivariety containing a~free solvable group},
journal = {Sbornik. Mathematics},
pages = {583--590},
publisher = {mathdoc},
volume = {40},
number = {4},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_40_4_a6/}
}
A. I. Budkin. The axiomatic rank of a~quasivariety containing a~free solvable group. Sbornik. Mathematics, Tome 40 (1981) no. 4, pp. 583-590. http://geodesic.mathdoc.fr/item/SM_1981_40_4_a6/