On integration by parts in Burkill's $SCP$-integral
Sbornik. Mathematics, Tome 40 (1981) no. 4, pp. 567-582

Voir la notice de l'article provenant de la source Math-Net.Ru

A number of properties of generalized integrals are proved. The main result is Theorm 3. {\it Suppose that $f$ is $SCP$-integrable on $[a,b]$ with base $B$ and $SCP$-primitive function $\Phi$, and $G(x)=\int^x_ag\,dt$, where $g$ is a continuous function of bounded variation on $[a,b]$. Then the product $f\cdot G$ is $SCP$-integrable on $[a,b]$ with base $B$, and $$ (SCP,B)\int^b_af\cdot G\,dx=\Phi\cdot G|^b_{x=a}-(D^*)\int^b_a\Phi g\,dx. $$} Theorem 3 can be used to prove that if $$ f(x)=\frac{a_0}2+\sum^\infty_{n=1}(a_n\cos nx+b_n\sin nx) $$ is finite everywhere on $[-\pi,\pi]$, then $$ a_n=\frac1\pi(SCP,B)\int^\pi_{-\pi}f(x)\cos nx\,dx,\qquad b_n=\frac1\pi\int^\pi_{-\pi}f(x)\sin nx\,dx $$ for $n\geqslant1$. Bibliography: 10 titles.
@article{SM_1981_40_4_a5,
     author = {V. A. Sklyarenko},
     title = {On integration by parts in {Burkill's} $SCP$-integral},
     journal = {Sbornik. Mathematics},
     pages = {567--582},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_40_4_a5/}
}
TY  - JOUR
AU  - V. A. Sklyarenko
TI  - On integration by parts in Burkill's $SCP$-integral
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 567
EP  - 582
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_40_4_a5/
LA  - en
ID  - SM_1981_40_4_a5
ER  - 
%0 Journal Article
%A V. A. Sklyarenko
%T On integration by parts in Burkill's $SCP$-integral
%J Sbornik. Mathematics
%D 1981
%P 567-582
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_40_4_a5/
%G en
%F SM_1981_40_4_a5
V. A. Sklyarenko. On integration by parts in Burkill's $SCP$-integral. Sbornik. Mathematics, Tome 40 (1981) no. 4, pp. 567-582. http://geodesic.mathdoc.fr/item/SM_1981_40_4_a5/