Absolute zero divisors in Jordan pairs and Lie algebras
Sbornik. Mathematics, Tome 40 (1981) no. 4, pp. 549-565

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved. Theorem. A Lie algebra over a ring $\Phi\ni1/6,$ generated by a finite set of elements of second order$,$ is nilpotent. Bibliography: 6 titles.
@article{SM_1981_40_4_a4,
     author = {E. I. Zel'manov},
     title = {Absolute zero divisors in {Jordan} pairs and {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {549--565},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_40_4_a4/}
}
TY  - JOUR
AU  - E. I. Zel'manov
TI  - Absolute zero divisors in Jordan pairs and Lie algebras
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 549
EP  - 565
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_40_4_a4/
LA  - en
ID  - SM_1981_40_4_a4
ER  - 
%0 Journal Article
%A E. I. Zel'manov
%T Absolute zero divisors in Jordan pairs and Lie algebras
%J Sbornik. Mathematics
%D 1981
%P 549-565
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_40_4_a4/
%G en
%F SM_1981_40_4_a4
E. I. Zel'manov. Absolute zero divisors in Jordan pairs and Lie algebras. Sbornik. Mathematics, Tome 40 (1981) no. 4, pp. 549-565. http://geodesic.mathdoc.fr/item/SM_1981_40_4_a4/