Absolute zero divisors in Jordan pairs and Lie algebras
Sbornik. Mathematics, Tome 40 (1981) no. 4, pp. 549-565
Cet article a éte moissonné depuis la source Math-Net.Ru
The following theorem is proved. Theorem. A Lie algebra over a ring $\Phi\ni1/6,$ generated by a finite set of elements of second order$,$ is nilpotent. Bibliography: 6 titles.
@article{SM_1981_40_4_a4,
author = {E. I. Zel'manov},
title = {Absolute zero divisors in {Jordan} pairs and {Lie} algebras},
journal = {Sbornik. Mathematics},
pages = {549--565},
year = {1981},
volume = {40},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_40_4_a4/}
}
E. I. Zel'manov. Absolute zero divisors in Jordan pairs and Lie algebras. Sbornik. Mathematics, Tome 40 (1981) no. 4, pp. 549-565. http://geodesic.mathdoc.fr/item/SM_1981_40_4_a4/
[1] A. I. Kostrikin, “O probleme Bernsaida”, Izv. AN SSSR, seriya matem., 23 (1959), 3–34 | MR
[2] A. I. Kostrikin, “Sendvichi v algebrakh Li”, Matem. sb., 110(152) (1979), 3–12 | MR | Zbl
[3] A. I. Shirshov, “Nekotorye voprosy teorii kolets, blizkikh k assotsiativnym”, Uspekhi matem. nauk, XIII:6(84) (1958), 3–20
[4] E. I. Zelmanov, “Iordanovy nil-algebry ogranichennogo indeksa”, DAN SSSR, 249:1 (1979), 30–33 | MR
[5] K. A. Zhevlakov, I. P. Shestakov, “O lokalnoi konechnosti v smysle Shirshova”, Algebra i logika, 12:1 (1973), 41–73
[6] O. Loos, “Jordan pairs”, Lecture Notes Math., 460 (1975) | MR | Zbl