Absolute zero divisors in Jordan pairs and Lie algebras
Sbornik. Mathematics, Tome 40 (1981) no. 4, pp. 549-565
Voir la notice de l'article provenant de la source Math-Net.Ru
The following theorem is proved.
Theorem. A Lie algebra over a ring $\Phi\ni1/6,$ generated by a finite set of elements of second order$,$ is nilpotent. Bibliography: 6 titles.
@article{SM_1981_40_4_a4,
author = {E. I. Zel'manov},
title = {Absolute zero divisors in {Jordan} pairs and {Lie} algebras},
journal = {Sbornik. Mathematics},
pages = {549--565},
publisher = {mathdoc},
volume = {40},
number = {4},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_40_4_a4/}
}
E. I. Zel'manov. Absolute zero divisors in Jordan pairs and Lie algebras. Sbornik. Mathematics, Tome 40 (1981) no. 4, pp. 549-565. http://geodesic.mathdoc.fr/item/SM_1981_40_4_a4/