Conditions for the nontriviality of the Hilbert space of a holomorphically induced representation of a solvable Lie group
Sbornik. Mathematics, Tome 40 (1981) no. 4, pp. 509-526 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The notion of holomorphically induced representation is ageneralization of the concept of representation induced by a representation of a subgroup. It permitted Kostant and Auslander to give a classification of irreducible unitary representations of solvable Lie groups. A holomorphically induced representation is constructed in a function space on the group, where the functions satisfy a number of algebraic conditions and lie in some $L^2$-space. It may happen that some nontrivial functions satisfy the algebraic conditions but none of them lie in $L^2$. In this paper a necessary and sufficient condition that this not occur when the Lie group under consideration is solvable is proved. The condition involves the Lie algebra and the parameters appearing in the definition of the representation. Bibliography: 10 titles.
@article{SM_1981_40_4_a2,
     author = {A. A. Zaitsev},
     title = {Conditions for the nontriviality of the {Hilbert} space of a~holomorphically induced representation of a~solvable {Lie} group},
     journal = {Sbornik. Mathematics},
     pages = {509--526},
     year = {1981},
     volume = {40},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_40_4_a2/}
}
TY  - JOUR
AU  - A. A. Zaitsev
TI  - Conditions for the nontriviality of the Hilbert space of a holomorphically induced representation of a solvable Lie group
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 509
EP  - 526
VL  - 40
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1981_40_4_a2/
LA  - en
ID  - SM_1981_40_4_a2
ER  - 
%0 Journal Article
%A A. A. Zaitsev
%T Conditions for the nontriviality of the Hilbert space of a holomorphically induced representation of a solvable Lie group
%J Sbornik. Mathematics
%D 1981
%P 509-526
%V 40
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1981_40_4_a2/
%G en
%F SM_1981_40_4_a2
A. A. Zaitsev. Conditions for the nontriviality of the Hilbert space of a holomorphically induced representation of a solvable Lie group. Sbornik. Mathematics, Tome 40 (1981) no. 4, pp. 509-526. http://geodesic.mathdoc.fr/item/SM_1981_40_4_a2/

[1] A. A. Kirillov, “Unitarnye predstavleniya nilpotentnykh grupp Li”, Uspekhi matem. nauk, XVII:4(106) (1962), 57–101 | MR

[2] L. Auslander, B. Kostant, “Quantization and representations of solvable Lie groups”, Bull. Amer. Math. Soc., 73 (1967), 692–695 | DOI | MR | Zbl

[3] K. Rossi, M. Vergne, “Representations of certain solvable Lie groups on Hilbert spaces of holomorphic functions and the application to the holomorphic discrete series of a semisimple Lie group”, J. Funct. Anal., 13:4 (1973), 324–389 | DOI | MR | Zbl

[4] H. Fujiurera, “On holomorphically induced representations of exponential groups”, Proc. Japan Acad., 52:8 (1976), 420–423 | DOI | MR

[5] A. A. Zaitsev, “Golomorfno indutsirovannye predstavleniya grupp Li s abelevym normalnym delitelem”, Trudy Mosk. matem. ob-va, 40 (1979), 47–82 | MR

[6] A. A. Zaitsev, “O netrivialnosti prostranstva golomorfno indutsirovannogo predstavleniya razreshimoi gruppy Li”, Funkts. analiz, 11:2 (1977), 78–79 | MR

[7] A. A. Kirillov, “Kharaktery unitarnykh predstavlenii grupp Li”, Funkts. analiz, 2:2 (1968), 40–55 | MR | Zbl

[8] A. A. Zaitsev, “Polozhitelnye polyarizatsii i abelevy idealy v algebrakh Li”, Matem. sb., 112(154):2(6) (1980), 242–255 | MR | Zbl

[9] J. Dixmiere, “Sur les representations unitaires des groups de Lie algébriques”, Ann. Inst. Fourier, 7 (1957), 315–328 | MR

[10] A. A. Zaitsev, “Odno svoistvo polyarizatsii”, Matem. zametki, 21:4 (1977), 453–457 | MR