Uniform estimates for solutions of the $\overline\partial$-equation in pseudoconvex polyhedra
Sbornik. Mathematics, Tome 40 (1981) no. 4, pp. 469-507
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the nonhomogeneous Cauchy–Riemann equation on an analytic submanifold “in general position” in a Cartesian product of strictly convex domains admits a solution with a uniform estimate. The possibility of weakening the requirement of “general position” in this result is investigated.
Bibliography: 46 titles.
@article{SM_1981_40_4_a1,
author = {A. G. Sergeev and G. M. Henkin},
title = {Uniform estimates for solutions of the $\overline\partial$-equation in pseudoconvex polyhedra},
journal = {Sbornik. Mathematics},
pages = {469--507},
publisher = {mathdoc},
volume = {40},
number = {4},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_40_4_a1/}
}
TY - JOUR AU - A. G. Sergeev AU - G. M. Henkin TI - Uniform estimates for solutions of the $\overline\partial$-equation in pseudoconvex polyhedra JO - Sbornik. Mathematics PY - 1981 SP - 469 EP - 507 VL - 40 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1981_40_4_a1/ LA - en ID - SM_1981_40_4_a1 ER -
A. G. Sergeev; G. M. Henkin. Uniform estimates for solutions of the $\overline\partial$-equation in pseudoconvex polyhedra. Sbornik. Mathematics, Tome 40 (1981) no. 4, pp. 469-507. http://geodesic.mathdoc.fr/item/SM_1981_40_4_a1/