Optional martingales
Sbornik. Mathematics, Tome 40 (1981) no. 4, pp. 435-468 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper it is proved that every optional local martingale $X$ is representable in the form $X=X^g+X^c+X^d$, where $X^c$ is a continuous martingale, $X^d$ is right continuous and $X^g$ is left continuous. The paper also contains results concerning square-integrable martingales. In paticular, a definition of stochastic integrals with respect to optional martingales is given, and a formula for change of variables is proved. Bibliography: 13 titles.
@article{SM_1981_40_4_a0,
     author = {L. I. Gal'chuk},
     title = {Optional martingales},
     journal = {Sbornik. Mathematics},
     pages = {435--468},
     year = {1981},
     volume = {40},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_40_4_a0/}
}
TY  - JOUR
AU  - L. I. Gal'chuk
TI  - Optional martingales
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 435
EP  - 468
VL  - 40
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1981_40_4_a0/
LA  - en
ID  - SM_1981_40_4_a0
ER  - 
%0 Journal Article
%A L. I. Gal'chuk
%T Optional martingales
%J Sbornik. Mathematics
%D 1981
%P 435-468
%V 40
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1981_40_4_a0/
%G en
%F SM_1981_40_4_a0
L. I. Gal'chuk. Optional martingales. Sbornik. Mathematics, Tome 40 (1981) no. 4, pp. 435-468. http://geodesic.mathdoc.fr/item/SM_1981_40_4_a0/

[1] C. Doleans-Dade, P. A. Meyer, “Integrates stochastiques par rapport aux martingales locales”, Sem. Prob., Strasbourg, IV, Lecture Notes Math., 124, Springer-Verlag, Berlin, 1970 | MR

[2] C. Deliacherie, P. A. Meyer, “Un nouveau théorème de projection et de section”, Sem. Prob., Strasbourg, IX, Lecture Notes Math., 465, Springer-Verlag, Berlin, 1975

[3] L. I. Galchuk, “O suschestvovanii optsionalnykh modifikatsii dlya martingalov”, Teoriya veroyatn., XXII:3 (1977), 620–622

[4] C. Deliacherie, P. A. Meyer, Probabilités et potentiels (version refondue), Hermann, Paris, 1976

[5] K. Dellasheri, Emkosti i sluchainye protsessy, izd.-vo “Mir”, Moskva, 1975 | MR

[6] C. Deliacherie, “Remarques sur la séparabilité optionnelle”, Sem. Prob., Strasbourg, XI, Lecture Notes Math., 585, Springer-Verlag, Berlin, 1977

[7] J. Horowitz, “Optional supermartingales and the Andersen–Jessen theorem”, Z. W-theorie, 43 (1978), 263–272 | MR | Zbl

[8] J. L. Doob, “Stochastic process measurablity conditions”, Ann. Inst. Fourier, Grenoble, 25:3–4 (1975), 163–176 | MR | Zbl

[9] A. Benveniste, “Séparabilité optionnelle, d'après Doob”, Sem. Prob., Strasbourg, X, 511, Lecture Notes Math., Springer-Verlag, Berlin, 1976, 521–531 | MR

[10] P. A. Meier, Veroyatnost i potentsialy, izd-vo “Mir”, Moskva, 1973

[11] P. A. Meyer, “Un cours sur les integrales stochastiques”, Sem. Prob., Strasbourg, X, 511, Lecture Notes Math., Springer-Verlag, Berlin, 1976 | MR

[12] J. Jacod, “Multivariate point process: predictable projections Radon–Nikodym derivatives, representation of martingales”, Z. W-theorie, 31 (1975), 235–253 | MR | Zbl

[13] Yu. M. Kabanov, R. Sh. Liptser, A. N. Shiryaev, “Absolyutnaya nepreryvnost i singulyarnost lokalno absolyutno nepreryvnykh veroyatnostnykh raspredelenii. I; II”, Matem. sb., 107(149) (1978), 364–415 ; 108(150) (1979), 32–61 | MR | Zbl | MR | Zbl