Spectral theory in spaces of analytic functionals for operators generated by multiplication by the independent variable
Sbornik. Mathematics, Tome 40 (1981) no. 3, pp. 387-427

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the spectral theory for the adjoint of the operator of multiplication by the independent variable in weight spaces of entire functions of one complex variable, and is closely connected with the theory of constant coefficient ordinary differential equations of infinite order $\displaystyle\sum^\infty_{k=0}c_k\frac{d^kf(z)}{dz^k_k}=0$ and of convolution type equations $\langle\varphi,f(z+\zeta)\rangle0$, with the theory of mean-periodic functions, and with the general theory of subspaces which are invariant under differentiation. Bibliography: 62 titles.
@article{SM_1981_40_3_a5,
     author = {V. A. Tkachenko},
     title = {Spectral theory in spaces of analytic functionals for operators generated by multiplication by the independent variable},
     journal = {Sbornik. Mathematics},
     pages = {387--427},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_40_3_a5/}
}
TY  - JOUR
AU  - V. A. Tkachenko
TI  - Spectral theory in spaces of analytic functionals for operators generated by multiplication by the independent variable
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 387
EP  - 427
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_40_3_a5/
LA  - en
ID  - SM_1981_40_3_a5
ER  - 
%0 Journal Article
%A V. A. Tkachenko
%T Spectral theory in spaces of analytic functionals for operators generated by multiplication by the independent variable
%J Sbornik. Mathematics
%D 1981
%P 387-427
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_40_3_a5/
%G en
%F SM_1981_40_3_a5
V. A. Tkachenko. Spectral theory in spaces of analytic functionals for operators generated by multiplication by the independent variable. Sbornik. Mathematics, Tome 40 (1981) no. 3, pp. 387-427. http://geodesic.mathdoc.fr/item/SM_1981_40_3_a5/