On the number of solutions of the equation $x^k=a$ in the symmetric group~$S_n$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 40 (1981) no. 3, pp. 349-362
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper consists of three sections. In the first a formula is given for the number $N^{(k)}_n(a)$ of solutions of the equation $x^k=a$ in $S_n$ depending on the cyclic structure of the permutation $a$. In the second an asymptotic formula is given for the quantity $M^{(k)}_n=\max_{a\in S_n}N^{(k)}_n(a)$  for a fixed $k\geqslant2$ as $n\to\infty$. In the third an asymptotic formula is found for the cardinality of the set of permutations $a$ such that the equation $x^k=a$ has a unique solution.
Bibliography: 5 titles.
			
            
            
            
          
        
      @article{SM_1981_40_3_a3,
     author = {A. I. Pavlov},
     title = {On the number of solutions of the equation $x^k=a$ in the symmetric group~$S_n$},
     journal = {Sbornik. Mathematics},
     pages = {349--362},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_40_3_a3/}
}
                      
                      
                    A. I. Pavlov. On the number of solutions of the equation $x^k=a$ in the symmetric group~$S_n$. Sbornik. Mathematics, Tome 40 (1981) no. 3, pp. 349-362. http://geodesic.mathdoc.fr/item/SM_1981_40_3_a3/
