General boundary value problems for a~class of singular and degenerate elliptic equations
Sbornik. Mathematics, Tome 40 (1981) no. 3, pp. 325-347

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates general boundary value problems for a class of singular and degenerate elliptic equations satisfying Lopatinskii-type conditions on the part of the boundary where the singularity is concentrated. In the elliptic equations considered, the singular Bessel operator $\displaystyle B=\frac{\partial^2}{\partial y^2}+\frac{2\nu+1}y\frac\partial{\partial y}$ operates on one of the variables. For the above-mentioned problems coercive (a priori) bounds are given, right and left regularizers are given, and, with these, Fredholm solvability is proved. Bibliography: 15 titles.
@article{SM_1981_40_3_a2,
     author = {V. V. Katrakhov},
     title = {General boundary value problems for a~class of singular and degenerate elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {325--347},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_40_3_a2/}
}
TY  - JOUR
AU  - V. V. Katrakhov
TI  - General boundary value problems for a~class of singular and degenerate elliptic equations
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 325
EP  - 347
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_40_3_a2/
LA  - en
ID  - SM_1981_40_3_a2
ER  - 
%0 Journal Article
%A V. V. Katrakhov
%T General boundary value problems for a~class of singular and degenerate elliptic equations
%J Sbornik. Mathematics
%D 1981
%P 325-347
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_40_3_a2/
%G en
%F SM_1981_40_3_a2
V. V. Katrakhov. General boundary value problems for a~class of singular and degenerate elliptic equations. Sbornik. Mathematics, Tome 40 (1981) no. 3, pp. 325-347. http://geodesic.mathdoc.fr/item/SM_1981_40_3_a2/