General boundary value problems for a~class of singular and degenerate elliptic equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 40 (1981) no. 3, pp. 325-347
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper investigates general boundary value problems for a class of singular and degenerate elliptic equations satisfying Lopatinskii-type conditions on the part of the boundary where the singularity is concentrated. In the elliptic equations considered, the singular Bessel operator $\displaystyle B=\frac{\partial^2}{\partial y^2}+\frac{2\nu+1}y\frac\partial{\partial y}$ operates on one of the variables. For the above-mentioned problems coercive (a priori) bounds are given, right and left regularizers are given, and, with these, Fredholm solvability is proved.
Bibliography: 15 titles.
			
            
            
            
          
        
      @article{SM_1981_40_3_a2,
     author = {V. V. Katrakhov},
     title = {General boundary value problems for a~class of singular and degenerate elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {325--347},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_40_3_a2/}
}
                      
                      
                    V. V. Katrakhov. General boundary value problems for a~class of singular and degenerate elliptic equations. Sbornik. Mathematics, Tome 40 (1981) no. 3, pp. 325-347. http://geodesic.mathdoc.fr/item/SM_1981_40_3_a2/
