Analogues of the Cauchy kernel on a Riemann surface and some of their applications
Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 241-265 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under certain restrictions on the behavior in the neighborhood of the ideal boundary analogues of the Cauchy kernel corresponding to an arbitrarily given finite divisor are constructed on an arbitrary Riemann surface. As a first application of these kernels a new proof of the Riemann–Roch theorem is given that differs from the well-known ones (even in the case of a ompact Riemann surface) by its simplicity and constructivity (bases of the corresponding spaces of functions and differentials are explicitly expressed in terms of elementary Abelian differentials of the first and third kinds). Using integrals of Cauchy type with kernels as mentioned above the author gives an explicit solution of the “jump” problem for piecewise meromorphic functions as well as for differentials. In addition, the results are applied to the study of the Riemann and Markushevich boundary value problems. Normal solvability of these problems is proved and their indices are computed. Bibliography: 26 titles.
@article{SM_1981_40_2_a8,
     author = {I. A. Bikchantaev},
     title = {Analogues of the {Cauchy} kernel on {a~Riemann} surface and some of their applications},
     journal = {Sbornik. Mathematics},
     pages = {241--265},
     year = {1981},
     volume = {40},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_40_2_a8/}
}
TY  - JOUR
AU  - I. A. Bikchantaev
TI  - Analogues of the Cauchy kernel on a Riemann surface and some of their applications
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 241
EP  - 265
VL  - 40
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1981_40_2_a8/
LA  - en
ID  - SM_1981_40_2_a8
ER  - 
%0 Journal Article
%A I. A. Bikchantaev
%T Analogues of the Cauchy kernel on a Riemann surface and some of their applications
%J Sbornik. Mathematics
%D 1981
%P 241-265
%V 40
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1981_40_2_a8/
%G en
%F SM_1981_40_2_a8
I. A. Bikchantaev. Analogues of the Cauchy kernel on a Riemann surface and some of their applications. Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 241-265. http://geodesic.mathdoc.fr/item/SM_1981_40_2_a8/

[1] E. I. Zverovich, “Kraevye zadachi teorii analiticheskikh funktsii v gëlderovskikh klassakh na rimanovykh poverkhnostyakh”, Uspekhi matem. nauk, XXVI:1(157) (1971), 113–179

[2] R. N. Abdulaev, “Zadacha Sokhotskogo na otkrytykh poverkhnostyakh”, Uchenye zapiski Permskogo un-ta, 103 (1963), 3–6 | MR

[3] L. V. Ahlfors, L. Sario, Riemann surfaces, Univ. Press, Princeton, 1960 | MR

[4] P. H. Abdulaev, “Zadacha Rimana na otkrytykh rimanovykh poverkhnostyakh”, Uchenye zapiski Permskogo un-ta, 103 (1963), 143–146 | MR

[5] G. V. Markov, “O kraevoi zadache Rimana na rimanovoi poverkhnosti s nulevoi granitsei”, Itogovaya nauchn. konferentsiya Kazanskogo un-ta za 1963 g., sektsiya matem., kibern. i teorii veroyatn., mekhan., Kazan, 1964, 16–17

[6] V. V. Mochalov, “Zadacha Rimana na otkrytoi rimanovoi poverkhnosti klassa $Q_{KD_i}$”, Trudy semin. po kraevym zadacham, 14, izd. Kazanskogo un-ta, 1977, 175–182 | MR

[7] L. Sario, M. Nakai, Classification theory of Riemann surfaces, Springer-Verlag, Berlin, 1970 | MR

[8] Yu. L. Rodin, “Vtoraya problema Kuzena na rimanovykh poverkhnostyakh beskonechnogo roda”, DAN SSSR, 203:6 (1972), 1258–1261 | MR | Zbl

[9] Yu. L. Rodin, “Nelineinye zadachi teorii funktsii na otkrytykh rimanovykh poverkhnostyakh”, Nekotorye voprosy sovremennoi teorii funktsii, Novosibirsk, 1976, 111–118 | MR

[10] K. L. Volkovyskii, “Obobschennye analiticheskie funktsii na rimanovykh poverkhnostyakh”, DAN SSSR, 225:1 (1975), 37–40 | MR | Zbl

[11] K. L. Volkovyskii, “Yadro Koshi s ogranicheniem na integral Dirikhle na otkrytykh rimanovykh poverkhnostyakh”, DAN Uz.SSR, 1976, no. 2, 10–12 | MR | Zbl

[12] K. L. Volkovyskii, “Obobschennye analiticheskie funktsii na otkrytykh rimanovykh poverkhnostyakh”, Metricheskie voprosy teorii funktsii i otobrazhenii, Naukova dumka, Kiev, 1977, 40–54 | MR

[13] Y. Kusunoki, “Theory of Abelian integrals and its applications to conformal mapping”, Mem. Coll. Sci. Univ. Kyoto, ser. A, 32 (1959), 235–258 | MR | Zbl

[14] M. Mori, “Contributions to the theory of differentials on open Riemann surfaces”, J. Math. Kyoto Univ., 4 (1964), 77–97 | MR | Zbl

[15] M. Yoshida, “The method of orthogonal decomposition for differentials on open Riemann surfaces”, J. Sci. Hiroshima Univ., ser. A-I, 32 (1968), 181–210 | MR | Zbl

[16] M. Shiba, “On the Riemann–Roch theorem on open Riemann surfaces”, J. Math. Kyoto Univ., 11 (1971), 495–525 | MR | Zbl

[17] M. Shiba, “A formulation of the Riemann–Roch theorem in terms of differentials with singularities at the ideal boundary”, J. Math. Kyoto Univ., 15 (1975), 1–18 | MR | Zbl

[18] M. Shiba, “Some general properties of behaviour spaces of harmonic semiexact differentials on open Riemann surface”, Hiroshima Math. J., 8:1 (1978), 151–164 | MR | Zbl

[19] H. Mizumoto, “Theory of Abelian differentials and relative extremal length with applications to extremal slit mappings”, Japan J. Math., 37 (1968), 1–58 | MR | Zbl

[20] K. Matsui, “Convergence theorem of Abelian differentials with applications to conformal mappings. II”, J. Math. Kyoto Univ., 17 (1977), 345–374 | MR

[21] Dzh. Springer, Vvedenie v teoriyu rimanovykh poverkhnostei, IL, Moskva, 1960

[22] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya, izd-vo “Nauka”, Moskva, 1968 | MR

[23] A. I. Markushevich, “Ob odnoi granichnoi zadache teorii analiticheskikh funktsii”, Uchenye zapiski MGU, 1:100 (1946), 20–29

[24] L. G. Mikhailov, “Novyi klass osobykh integralnykh uravnenii i ego primeneniya k differentsialnym uravneniyam s singulyarnymi koeffitsientami”, Trudy AN Tadzh.SSR, t. I, Dushanbe, 1963 | MR

[25] B. V. Boyarskii, “Ob obobschennoi granichnoi zadache Gilberta”, Soobsch. AN Gruz.SSR, 25:4 (1960), 385–390

[26] E. I. Zverovich, “Metod lokalno konformnogo skleivaniya”, DAN SSSR, 205:4 (1972), 767–770 | Zbl