Transitional phenomena of renewal theory in asymptotic problems of the theory of random processes. II
Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 211-225
Cet article a éte moissonné depuis la source Math-Net.Ru
Transitional phenomena in branching processes and limit distributions of boundary functional for random walks on a finite Markov chain are studied on the basis of transitional phenomena in renewal theory. Bibliography: 5 titles.
@article{SM_1981_40_2_a6,
author = {V. M. Shurenkov},
title = {Transitional phenomena of renewal theory in asymptotic problems of the theory of random {processes.~II}},
journal = {Sbornik. Mathematics},
pages = {211--225},
year = {1981},
volume = {40},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_40_2_a6/}
}
V. M. Shurenkov. Transitional phenomena of renewal theory in asymptotic problems of the theory of random processes. II. Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 211-225. http://geodesic.mathdoc.fr/item/SM_1981_40_2_a6/
[1] B. A. Sevastyanov, Vetvyaschiesya protsessy, izd-vo “Nauka”, Moskva, 1971 | MR
[2] V. M. Shurenkov, “Dve predelnye teoremy dlya kriticheskikh vetvyaschikhsya protsessov”, Teoriya veroyatn., XXI:3 (1976), 548–558
[3] I. I. Ezhov, A. V. Skorokhod, “Markovskie protsessy, odnorodnye po vtoroi komponente. II”, Teoriya veroyatn., XIV:4 (1969), 679–692
[4] V. S. Korolyuk, V. M. Shurenkov, “Metod potentsiala v granichnykh zadachakh dlya sluchainykh bluzhdanii na tsepi Markova”, Ukr. matem. zh., 29 (1977), 464–471 | Zbl
[5] H. Miller, “A convexity property in the theory of random variables defined on a finite Markov chain”, Ann. Math. Statist., 32 (1961), 1260–1270 | DOI | MR | Zbl