Transitional phenomena of renewal theory in asymptotic problems of the theory of random processes. II
Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 211-225 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Transitional phenomena in branching processes and limit distributions of boundary functional for random walks on a finite Markov chain are studied on the basis of transitional phenomena in renewal theory. Bibliography: 5 titles.
@article{SM_1981_40_2_a6,
     author = {V. M. Shurenkov},
     title = {Transitional phenomena of renewal theory in asymptotic problems of the theory of random {processes.~II}},
     journal = {Sbornik. Mathematics},
     pages = {211--225},
     year = {1981},
     volume = {40},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_40_2_a6/}
}
TY  - JOUR
AU  - V. M. Shurenkov
TI  - Transitional phenomena of renewal theory in asymptotic problems of the theory of random processes. II
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 211
EP  - 225
VL  - 40
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1981_40_2_a6/
LA  - en
ID  - SM_1981_40_2_a6
ER  - 
%0 Journal Article
%A V. M. Shurenkov
%T Transitional phenomena of renewal theory in asymptotic problems of the theory of random processes. II
%J Sbornik. Mathematics
%D 1981
%P 211-225
%V 40
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1981_40_2_a6/
%G en
%F SM_1981_40_2_a6
V. M. Shurenkov. Transitional phenomena of renewal theory in asymptotic problems of the theory of random processes. II. Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 211-225. http://geodesic.mathdoc.fr/item/SM_1981_40_2_a6/

[1] B. A. Sevastyanov, Vetvyaschiesya protsessy, izd-vo “Nauka”, Moskva, 1971 | MR

[2] V. M. Shurenkov, “Dve predelnye teoremy dlya kriticheskikh vetvyaschikhsya protsessov”, Teoriya veroyatn., XXI:3 (1976), 548–558

[3] I. I. Ezhov, A. V. Skorokhod, “Markovskie protsessy, odnorodnye po vtoroi komponente. II”, Teoriya veroyatn., XIV:4 (1969), 679–692

[4] V. S. Korolyuk, V. M. Shurenkov, “Metod potentsiala v granichnykh zadachakh dlya sluchainykh bluzhdanii na tsepi Markova”, Ukr. matem. zh., 29 (1977), 464–471 | Zbl

[5] H. Miller, “A convexity property in the theory of random variables defined on a finite Markov chain”, Ann. Math. Statist., 32 (1961), 1260–1270 | DOI | MR | Zbl