On points of coincidence of two mappings
Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 205-210

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the coincidence theory of two continuous mappings. A definition is given, in cohomological terms, of the coincidence index $I_{f,g}$ of two continuous mappings $f,g\colon M\to N$, where $M$ and $N$ are connected (not necessarily compact), orientable, $n$-dimensional topological manifolds without boundary, $f$ is a compact mapping and $g$ is a proper mapping. Invariance of the index $I_{f,g}$ under compact homotopies of $f$ and proper homotopies of $g$ is proved. It is shown that $I_{f,g}\ne0$ is a sufficient condition for the existence of coincidence points of $f$ and $g$. The Lefschetz number $\Lambda_{f,g}$ for $f$ and $g$ is also defined. The main result of the paper is a theorem on the coincidence of the numbers $\Lambda_{f,g}$ and $I_{f,g}$. Bibliography: 7 titles.
@article{SM_1981_40_2_a5,
     author = {V. P. Davidyan},
     title = {On points of coincidence of two mappings},
     journal = {Sbornik. Mathematics},
     pages = {205--210},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_40_2_a5/}
}
TY  - JOUR
AU  - V. P. Davidyan
TI  - On points of coincidence of two mappings
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 205
EP  - 210
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_40_2_a5/
LA  - en
ID  - SM_1981_40_2_a5
ER  - 
%0 Journal Article
%A V. P. Davidyan
%T On points of coincidence of two mappings
%J Sbornik. Mathematics
%D 1981
%P 205-210
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_40_2_a5/
%G en
%F SM_1981_40_2_a5
V. P. Davidyan. On points of coincidence of two mappings. Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 205-210. http://geodesic.mathdoc.fr/item/SM_1981_40_2_a5/