On points of coincidence of two mappings
Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 205-210
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper is devoted to the coincidence theory of two continuous mappings. A definition is given, in cohomological terms, of the coincidence index $I_{f,g}$ of two continuous mappings $f,g\colon M\to N$, where $M$ and $N$ are connected (not necessarily compact), orientable, $n$-dimensional topological manifolds without boundary, $f$ is a compact mapping and $g$ is a proper mapping. Invariance of the index $I_{f,g}$ under compact homotopies of $f$ and proper homotopies of $g$ is proved. It is shown that $I_{f,g}\ne0$ is a sufficient condition for the existence of coincidence points of $f$ and $g$. The Lefschetz number $\Lambda_{f,g}$ for $f$ and $g$ is also defined. The main result of the paper is a theorem on the coincidence of the numbers $\Lambda_{f,g}$ and $I_{f,g}$. Bibliography: 7 titles.
@article{SM_1981_40_2_a5,
author = {V. P. Davidyan},
title = {On points of coincidence of two mappings},
journal = {Sbornik. Mathematics},
pages = {205--210},
year = {1981},
volume = {40},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_40_2_a5/}
}
V. P. Davidyan. On points of coincidence of two mappings. Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 205-210. http://geodesic.mathdoc.fr/item/SM_1981_40_2_a5/
[1] S. Lefshets, Algebraicheskaya topologiya, IL, Moskva, 1949
[2] E. Spener, Algebraicheskaya topologiya, izd-vo “Mir”, Moskva, 1971 | MR
[3] G. E. Bredon, Sheaf theory, McGraw-Hill, New York, 1967 | MR | Zbl
[4] A. Granas, “Generalizing the Hopf–Lefschetz fixed point theorem for non-compact ANR-s”, Ann. Math. Stud., 69 (1970), 119–130 | MR
[5] K. K. Mukherjea, “A survey of coincidence theory”, Global Anal. and appl. Lact. Int. Semin., v. 3 (Trieste, 1972), Vienna, 1974, 55–64 | MR | Zbl
[6] M. Nakaoka, “Note on the Lefschetz fixed point theorem”, Osaka J. Math., 6 (1969), 135–142 | MR | Zbl
[7] T. N. Schelokova, “K teorii sovpadenii pary nepreryvnykh otobrazhenii”, Sb. rabot aspirantov VGU, 1972, no. 2, 70–77